The objective of the modern medicine is an early cost-effective accurate diagnosis of a disease, and its quick remediation with minimum side effects. Our collaborative research with Profssor Mallik of NDSU Pharmacy investigates a novel methodology using liposomes coupled with a noninvasive ultrasound mediated control and property detremination. The lipsome can contain various biomaterials such as fluorescent dyes, enzyme inhibitors, anti-cancer drugs, magnetic resonance contrast agents etc. depending on the intended use of the system. Mallik (co-PI) is an expert in designing small peptide molecules with specific chemical signature and synthesizing liposomes that are able to act as synthetic antibodies—preferentially attaches to target proteins—and deliver drugs. Currently, we are developing echogenic liposomes (ELIPs) which trap air and have peptidated domains that are recognized and cleaved by specific enzymes. They can be used for concurrent ultrasound imaging and targeted drug delivery. Our lab is characterizing their acoustic response and ultrasound mediated release properties to optimize their applications.


Related Publication

  • Paul S, Nahire R, Mallik S, Sarkar K 2014 “Encapsulated microbubbles and echogenic liposomes for contrast ultrasound imaging and targeted drug delivery,” Computational Mechanics, 53,413-435.

    Micron- to nanometer-sized ultrasound agents,like encapsulated microbubbles and echogenic liposomes,are being developed for diagnostic imaging and ultra-sound mediated drug/gene delivery. This review providesan overview of the current state of the art of the mathe-matical models of the acoustic behavior of ultrasound con-trast microbubbles. We also present a review of the in vitroexperimental characterization of the acoustic properties ofmicrobubble based contrast agents undertaken in our lab-oratory. The hierarchical two-pronged approach of model-ing contrast agents we developed is demonstrated for a lipidcoated (SonazoidTM)and a polymer shelled (polyD-L-lactic acid) contrast microbubbles. The acoustic and drugrelease properties of the newly developed echogenic lipo-somes are discussed for their use as simultaneous imagingand drug/gene delivery agents. Although echogenicity is con-clusively demonstrated in experiments, its physical mecha-nisms remain uncertain. Addressing questions raised herewill accelerate further development and eventual clinicalapproval of these novel technologies.

  • Nahire R, Halder M, Paul S, Margoum A, Ambre AH, Katti KS, Gange KN, Srivastava D K, Sarkar K, Mallik S 2014 “pH-Triggered Echogenicity and Contents Release from Liposomes,” Molecular Pharamaceutics, 11, 4059-4068.

    Liposomes are representative lipid nanoparticles widelyused for delivering anticancer drugs, DNA fragments, or siRNA to cancercells. Upon targeting, various internal and external triggers have been usedto increase the rate for contents release from the liposomes. Among theinternal triggers, decreased pH within the cellular lysosomes has beensuccessfully used to enhance the rate for releasing contents. However,imparting pH sensitivity to liposomes requires the synthesis of specializedlipids with structures that are substantially modified at a reduced pH.Herein, we report an alternative strategy to render liposomes pH sensitiveby encapsulating a precursor which generates gas bubblesin situinresponse to acidic pH. The disturbance created by the escaping gasbubbles leads to the rapid release of the encapsulated contents from theliposomes. Atomic force microscopic studies indicate that the liposomalstructure is destroyed at a reduced pH. The gas bubbles also render theliposomes echogenic, allowing ultrasound imaging. To demonstrate the applicability of this strategy, we have successfully targeteddoxorubicin-encapsulated liposomes to the pancreatic ductal carcinoma cells that overexpress the folate receptor on the surface.In response to the decreased pH in the lysosomes, the encapsulated anticancer drug is efficiently released. Contents releasedfrom these liposomes are further enhanced by the application of continuous wave ultrasound (1 MHz), resulting in substantiallyreduced viability for the pancreatic cancer cells (14%).

  • Nahire R, Halder M, Paul S, Margoum A, Ambre AH, Katti KS, Gange KN, Srivastava D K, Sarkar K, Mallik S 2013 “Polymer Coated Echogenic Lipid Nanoparticles with dual release triggers,” Biomacromolecules, 14, 841-853.

    Although lipid nanoparticles are promising drugdelivery vehicles, passive release of encapsulated contents atthe target site is often slow. Herein, we report contents releasefrom targeted, polymer-coated, echogenic lipid nanoparticles inthe cell cytoplasm by redox trigger and simultaneouslyenhanced by diagnostic frequency ultrasound. The lipidnanoparticles were polymerized on the external leaflet usinga disulfide cross-linker. In the presence of cytosolicconcentrations of glutathione, the lipid nanoparticles released76% of encapsulated contents. Plasma concentrations ofglutathione failed to releasethe encapsulated contents.Application of 3 MHz ultrasound for 2 min simultaneouslywith the reducing agent enhanced the release to 96%. Folicacid conjugated, doxorubicin-loaded nanoparticles showed enhanced uptake and higher cytotoxicity in cancer cells overexpressingthe folate receptor (compared to the control). With further developments, these lipid nanoparticles have the potential to be usedas multimodal nanocarriers for simultaneous targeted drug delivery and ultrasound imaging.

  • Nahire R, Hossain R, Patel R, Paul S, Ambre AH, Meghnani V, Layek B, Katti KS, Gange KN, Leclarc E, Srivastava D K, Sarkar K, Mallik S 2014 “Multifunctional polymersomes for cytosolic delivery of gemcitabine and doxorubicin to cancer cells,” Biomaterials, 35, 6482-6497.

    Although liposomes are widely used as carriers of drugs and imaging agents, they suffer from a lack ofstability and the slow release of the encapsulated contents at the targeted site. Polymersomes (vesicles ofamphiphilic polymers) are considerably more stable compared to liposomes; however, they alsodemonstrate a slow release for the encapsulated contents, limiting their efficacy as a drug-delivery tool.As a solution, we prepared and characterized echogenic polymersomes, which are programmed torelease the encapsulated drugs rapidly when incubated with cytosolic concentrations of glutathione.These vesicles encapsulated air bubbles inside and efficiently reflected diagnostic-frequency ultrasound.Folate-targeted polymersomes showed an enhanced uptake by breast and pancreatic-cancer cells in amonolayer as well as in three-dimensional spheroid cultures. Polymersomes encapsulated with theanticancer drugs gemcitabine and doxorubicin showed significant cytotoxicity to these cells. Withfurther improvements, these vesicles hold the promise to serve as multifunctional nanocarriers, offeringa triggered release as well as diagnostic ultrasound imaging.

  • Kumar KN, Mallik S, Sarkar K, 2017 “Role of freeze-drying in the presence of mannitol on the echogenicity of echogenic liposomes,” Journal of the Acoustical Society of America, 142, 3670-3676.

    Echogenic liposomes (ELIPs) are an excellent candidate for ultrasound activated therapeutics andimaging. Although multiple experiments have established their echogenicity, the underlying mech-anism has remained unknown. However, freeze-drying in the presence of mannitol during ELIPpreparation has proved critical to ensuring echogenicity. Here, the role of this key component in thepreparation protocol was investigated by measuring scattering from freshly prepared freeze-driedaqueous solution of mannitol—and a number of other excipients commonly used in lyophiliza-tion—directly dispersed in water without any lipids in the experiment. Mannitol, meso-erythritol,glycine, and glucose that form a highly porous crystalline phase upon freeze-drying generated bub-bles resulting in strong echoes during their dissolution. On the other hand, sucrose, trehalose, andxylitol, which become glassy while freeze-dried, did not. Freeze-dried mannitol and other crystal-line substances, if thawed before being introduced into the scattering volume, did not produce echo-genicity, as they lost their crystallinity in the thawed state. The echogenicity disappeared in adegassed environment. Higher amounts of sugar in the original aqueous solution before freeze-drying resulted in higher echogenicity because of the stronger supersaturation and crystallinity. Thebubbles created by the freeze-dried mannitol in the ELIP formulation play a critical role in makingELIPs echogenic.

  • Xia L, Karandish F, Kumar KN, Froberg J, Kulkarni P, Gange KN, Choi Y, Mallik S, Sarkar K 2017 “Acoustic characterization of echogenic polymersomes prepared from amphiphilic block copolymers,” Ultrasound in Medicine and Biology, 44, 447-457.

    Polymersomes are a class of artificial vesicles prepared from amphiphilic polymers. Like lipid vesicles(liposomes), they too can encapsulate hydrophilic and hydrophobic drug molecules in the aqueous core and thehydrophobic bilayer respectively, but are more stable than liposomes. Although echogenic liposomes have beenwidely investigated for simultaneous ultrasound imaging and controlled drug delivery, the potential of thepolymersomes remains unexplored. We prepared two different echogenic polymersomes from the amphiphilic co-polymers polyethylene glycol–poly-DL-lactic acid (PEG-PLA) and polyethylene glycol–poly-L-lactic acid (PEG-PLLA), incorporating multiple freeze-dry cycles in the synthesis protocol to ensure their echogenicity. We investigatedacoustic behavior with potential applications in biomedical imaging. We characterized the polymeric vesicles acous-tically with three different excitation frequencies of 2.25, 5 and 10 MHz at 500 kPa. The polymersomes exhibitedstrong echogenicity at all three excitation frequencies (about 50- and 25-dB enhancements in fundamental andsubharmonic, respectively, at 5-MHz excitation from 20g/mL polymers in solution). Unlike echogenic lipo-somes, they emitted strong subharmonic responses. The scattering results indicated their potential as contrastagents, which was also confirmed by clinical ultrasound imaging.

  • Kulkarni P, Haldar MK, Karandish F, Confeld M, Hossain R, Borowicz P, Gange KN, Xia L, Sarkar K, Mallik S 2018Tissue-penetrating, hypoxia-responsive echogenic polymersomes for drug delivery to solid tumors,Chemistry A European Journal, 24, 12490-12494.

    Hypoxia in solid tumors facilitates the progres-sion of the disease, develops resistance to chemo and radiotherapy, and contributes to relapse. Due to the lack of tumor penetration, most of the reported drug carriers are unable to reach the hypoxic niches of the solid tumors. We have developed tissue-penetrating, hypoxia-responsive echogenic polymersomes to deliver anti cancer drugs to solid tumors. The polymersomes are composed of a hy-poxia-responsive azobenzene conjugated and a tissue penetrating peptide functionalized polylactic acid-polyethylene glycol polymer. The drug-encapsulated, hypoxia-responsive polymersomes substantially decreased the viability of pancreatic cancer cells in spheroidal cultures. Under normoxic conditions, polymersomes were echogenic at diagnostic ultrasound frequencies but lose the echogenicity under hypoxia. In vivo imaging studies with xenograft mouse model further confirmed the ability of the polymersomes to target, penetrate, and deliver the encapsulated contents in hypoxic pancreatic tumor tissues.

  • Karandish F, Haldar MK, Xia L, Gange KN, Feng L, You S, Choi Y, Sarkar K, Mallik S  2018Nucleus-targeted, echogenic polymersomes for delivering a cancer stemness inhibitor to pancreatic cancer cells,Biomacromolecules, 19,4122-4132.

    Chemotherapeutic agents for treating cancers show considerable sideeffects, toxicity, and drug resistance. To mitigate the problems, we designed nucleus-targeted, echogenic, stimuli-responsive polymeric vesicles (polymersomes) to transport andsubsequently release the encapsulated anticancer drugs within the nuclei of pancreaticcancer cells. We synthesized an alkyne-dexamethasone derivative and conjugated it to N3−polyethylene glycol (PEG)−polylactic acid (PLA) copolymer employing the Cu2+catalyzed“Click”reaction. We prepared polymersomes from the dexamethasone−PEG−PLA conjugate along with a synthesized stimuli-responsive polymer PEG−S−S−PLA. Thedexamethasone group dilates the nuclear pore complexes and transports the vesicles to thenuclei. We designed the polymersomes to release the encapsulated drugs in the presence ofa high concentration of reducing agents in the nuclei of pancreatic cancer cells. Weobserved that the nucleus-targeted, stimuli-responsive polymersomes released 70% ofencapsulated contents in the nucleus-mimicking environment in 80 min. We encapsulatedthe cancer stemness inhibitor BBI608 in the vesicles and observed that the BBI608encapsulated polymersomes reduced the viability of the BxPC3 cells to 43% in three-dimensional spheroid cultures. Thepolymersomes were prepared following a special protocol so that they scatter ultrasound, allowing imaging by a medicalultrasound scanner. Therefore, these echogenic, targeted, stimuli-responsive, and drug-encapsulated polymersomes have thepotential for trackable, targeted carrier of chemotherapeutic drugs to cancer cell nuclei.

  • Nahire R, Halder M, Paul S, Margoum A, Ambre AH, Katti KS, Gange KN, Srivastava D K, Sarkar K, Mallik S 2014 “pH-Triggered Echogenicity and Contents Release from Liposomes,” Molecular Pharamaceutics, 11, 4059-4068.

    Liposomes are representative lipid nanoparticles widelyused for delivering anticancer drugs, DNA fragments, or siRNA to cancercells. Upon targeting, various internal and external triggers have been usedto increase the rate for contents release from the liposomes. Among theinternal triggers, decreased pH within the cellular lysosomes has beensuccessfully used to enhance the rate for releasing contents. However,imparting pH sensitivity to liposomes requires the synthesis of specializedlipids with structures that are substantially modified at a reduced pH.Herein, we report an alternative strategy to render liposomes pH sensitiveby encapsulating a precursor which generates gas bubblesin situinresponse to acidic pH. The disturbance created by the escaping gasbubbles leads to the rapid release of the encapsulated contents from theliposomes. Atomic force microscopic studies indicate that the liposomalstructure is destroyed at a reduced pH. The gas bubbles also render theliposomes echogenic, allowing ultrasound imaging. To demonstrate the applicability of this strategy, we have successfully targeteddoxorubicin-encapsulated liposomes to the pancreatic ductal carcinoma cells that overexpress the folate receptor on the surface.In response to the decreased pH in the lysosomes, the encapsulated anticancer drug is efficiently released. Contents releasedfrom these liposomes are further enhanced by the application of continuous wave ultrasound (1 MHz), resulting in substantiallyreduced viability for the pancreatic cancer cells (14%).

  • Paul S, Nahire R, Mallik S, Sarkar K 2014 “Encapsulated microbubbles and echogenic liposomes for contrast ultrasound imaging and targeted drug delivery,” Computational Mechanics, 53,413-435.

    Micron- to nanometer-sized ultrasound agents,like encapsulated microbubbles and echogenic liposomes,are being developed for diagnostic imaging and ultra-sound mediated drug/gene delivery. This review providesan overview of the current state of the art of the mathe-matical models of the acoustic behavior of ultrasound con-trast microbubbles. We also present a review of the in vitroexperimental characterization of the acoustic properties ofmicrobubble based contrast agents undertaken in our lab-oratory. The hierarchical two-pronged approach of model-ing contrast agents we developed is demonstrated for a lipidcoated (SonazoidTM)and a polymer shelled (polyD-L-lactic acid) contrast microbubbles. The acoustic and drugrelease properties of the newly developed echogenic lipo-somes are discussed for their use as simultaneous imagingand drug/gene delivery agents. Although echogenicity is con-clusively demonstrated in experiments, its physical mecha-nisms remain uncertain. Addressing questions raised herewill accelerate further development and eventual clinicalapproval of these novel technologies.

  • Nahire R, Halder M, Paul S, Margoum A, Ambre AH, Katti KS, Gange KN, Srivastava D K, Sarkar K, Mallik S 2013 “Polymer Coated Echogenic Lipid Nanoparticles with dual release triggers,” Biomacromolecules, 14, 841-853.

    Although lipid nanoparticles are promising drugdelivery vehicles, passive release of encapsulated contents atthe target site is often slow. Herein, we report contents releasefrom targeted, polymer-coated, echogenic lipid nanoparticles inthe cell cytoplasm by redox trigger and simultaneouslyenhanced by diagnostic frequency ultrasound. The lipidnanoparticles were polymerized on the external leaflet usinga disulfide cross-linker. In the presence of cytosolicconcentrations of glutathione, the lipid nanoparticles released76% of encapsulated contents. Plasma concentrations ofglutathione failed to releasethe encapsulated contents.Application of 3 MHz ultrasound for 2 min simultaneouslywith the reducing agent enhanced the release to 96%. Folicacid conjugated, doxorubicin-loaded nanoparticles showed enhanced uptake and higher cytotoxicity in cancer cells overexpressingthe folate receptor (compared to the control). With further developments, these lipid nanoparticles have the potential to be usedas multimodal nanocarriers for simultaneous targeted drug delivery and ultrasound imaging.

  • Nahire R, Hossain R, Patel R, Paul S, Ambre AH, Meghnani V, Layek B, Katti KS, Gange KN, Leclarc E, Srivastava D K, Sarkar K, Mallik S 2014 “Multifunctional polymersomes for cytosolic delivery of gemcitabine and doxorubicin to cancer cells,” Biomaterials, 35, 6482-6497.

    Although liposomes are widely used as carriers of drugs and imaging agents, they suffer from a lack ofstability and the slow release of the encapsulated contents at the targeted site. Polymersomes (vesicles ofamphiphilic polymers) are considerably more stable compared to liposomes; however, they alsodemonstrate a slow release for the encapsulated contents, limiting their efficacy as a drug-delivery tool.As a solution, we prepared and characterized echogenic polymersomes, which are programmed torelease the encapsulated drugs rapidly when incubated with cytosolic concentrations of glutathione.These vesicles encapsulated air bubbles inside and efficiently reflected diagnostic-frequency ultrasound.Folate-targeted polymersomes showed an enhanced uptake by breast and pancreatic-cancer cells in amonolayer as well as in three-dimensional spheroid cultures. Polymersomes encapsulated with theanticancer drugs gemcitabine and doxorubicin showed significant cytotoxicity to these cells. Withfurther improvements, these vesicles hold the promise to serve as multifunctional nanocarriers, offeringa triggered release as well as diagnostic ultrasound imaging.

  • Kumar KN, Mallik S, Sarkar K, 2017 “Role of freeze-drying in the presence of mannitol on the echogenicity of echogenic liposomes,” Journal of the Acoustical Society of America, 142, 3670-3676.

    Echogenic liposomes (ELIPs) are an excellent candidate for ultrasound activated therapeutics andimaging. Although multiple experiments have established their echogenicity, the underlying mech-anism has remained unknown. However, freeze-drying in the presence of mannitol during ELIPpreparation has proved critical to ensuring echogenicity. Here, the role of this key component in thepreparation protocol was investigated by measuring scattering from freshly prepared freeze-driedaqueous solution of mannitol—and a number of other excipients commonly used in lyophiliza-tion—directly dispersed in water without any lipids in the experiment. Mannitol, meso-erythritol,glycine, and glucose that form a highly porous crystalline phase upon freeze-drying generated bub-bles resulting in strong echoes during their dissolution. On the other hand, sucrose, trehalose, andxylitol, which become glassy while freeze-dried, did not. Freeze-dried mannitol and other crystal-line substances, if thawed before being introduced into the scattering volume, did not produce echo-genicity, as they lost their crystallinity in the thawed state. The echogenicity disappeared in adegassed environment. Higher amounts of sugar in the original aqueous solution before freeze-drying resulted in higher echogenicity because of the stronger supersaturation and crystallinity. Thebubbles created by the freeze-dried mannitol in the ELIP formulation play a critical role in makingELIPs echogenic.

  • Xia L, Karandish F, Kumar KN, Froberg J, Kulkarni P, Gange KN, Choi Y, Mallik S, Sarkar K 2017 “Acoustic characterization of echogenic polymersomes prepared from amphiphilic block copolymers,” Ultrasound in Medicine and Biology, 44, 447-457.

    Polymersomes are a class of artificial vesicles prepared from amphiphilic polymers. Like lipid vesicles(liposomes), they too can encapsulate hydrophilic and hydrophobic drug molecules in the aqueous core and thehydrophobic bilayer respectively, but are more stable than liposomes. Although echogenic liposomes have beenwidely investigated for simultaneous ultrasound imaging and controlled drug delivery, the potential of thepolymersomes remains unexplored. We prepared two different echogenic polymersomes from the amphiphilic co-polymers polyethylene glycol–poly-DL-lactic acid (PEG-PLA) and polyethylene glycol–poly-L-lactic acid (PEG-PLLA), incorporating multiple freeze-dry cycles in the synthesis protocol to ensure their echogenicity. We investigatedacoustic behavior with potential applications in biomedical imaging. We characterized the polymeric vesicles acous-tically with three different excitation frequencies of 2.25, 5 and 10 MHz at 500 kPa. The polymersomes exhibitedstrong echogenicity at all three excitation frequencies (about 50- and 25-dB enhancements in fundamental andsubharmonic, respectively, at 5-MHz excitation from 20g/mL polymers in solution). Unlike echogenic lipo-somes, they emitted strong subharmonic responses. The scattering results indicated their potential as contrastagents, which was also confirmed by clinical ultrasound imaging.

  • Kulkarni P, Haldar MK, Karandish F, Confeld M, Hossain R, Borowicz P, Gange KN, Xia L, Sarkar K, Mallik S 2018Tissue-penetrating, hypoxia-responsive echogenic polymersomes for drug delivery to solid tumors,Chemistry A European Journal, 24, 12490-12494.

    Hypoxia in solid tumors facilitates the progres-sion of the disease, develops resistance to chemo and radiotherapy, and contributes to relapse. Due to the lack of tumor penetration, most of the reported drug carriers are unable to reach the hypoxic niches of the solid tumors. We have developed tissue-penetrating, hypoxia-responsive echogenic polymersomes to deliver anti cancer drugs to solid tumors. The polymersomes are composed of a hy-poxia-responsive azobenzene conjugated and a tissue penetrating peptide functionalized polylactic acid-polyethylene glycol polymer. The drug-encapsulated, hypoxia-responsive polymersomes substantially decreased the viability of pancreatic cancer cells in spheroidal cultures. Under normoxic conditions, polymersomes were echogenic at diagnostic ultrasound frequencies but lose the echogenicity under hypoxia. In vivo imaging studies with xenograft mouse model further confirmed the ability of the polymersomes to target, penetrate, and deliver the encapsulated contents in hypoxic pancreatic tumor tissues.

  • Karandish F, Haldar MK, Xia L, Gange KN, Feng L, You S, Choi Y, Sarkar K, Mallik S  2018Nucleus-targeted, echogenic polymersomes for delivering a cancer stemness inhibitor to pancreatic cancer cells,Biomacromolecules, 19,4122-4132.

    Chemotherapeutic agents for treating cancers show considerable sideeffects, toxicity, and drug resistance. To mitigate the problems, we designed nucleus-targeted, echogenic, stimuli-responsive polymeric vesicles (polymersomes) to transport andsubsequently release the encapsulated anticancer drugs within the nuclei of pancreaticcancer cells. We synthesized an alkyne-dexamethasone derivative and conjugated it to N3−polyethylene glycol (PEG)−polylactic acid (PLA) copolymer employing the Cu2+catalyzed“Click”reaction. We prepared polymersomes from the dexamethasone−PEG−PLA conjugate along with a synthesized stimuli-responsive polymer PEG−S−S−PLA. Thedexamethasone group dilates the nuclear pore complexes and transports the vesicles to thenuclei. We designed the polymersomes to release the encapsulated drugs in the presence ofa high concentration of reducing agents in the nuclei of pancreatic cancer cells. Weobserved that the nucleus-targeted, stimuli-responsive polymersomes released 70% ofencapsulated contents in the nucleus-mimicking environment in 80 min. We encapsulatedthe cancer stemness inhibitor BBI608 in the vesicles and observed that the BBI608encapsulated polymersomes reduced the viability of the BxPC3 cells to 43% in three-dimensional spheroid cultures. Thepolymersomes were prepared following a special protocol so that they scatter ultrasound, allowing imaging by a medicalultrasound scanner. Therefore, these echogenic, targeted, stimuli-responsive, and drug-encapsulated polymersomes have thepotential for trackable, targeted carrier of chemotherapeutic drugs to cancer cell nuclei.

  • Karandish F, Haldar MK, Xia L, Gange KN, Feng L, You S, Choi Y, Sarkar K, Mallik S  2018Nucleus-targeted, echogenic polymersomes for delivering a cancer stemness inhibitor to pancreatic cancer cells,Biomacromolecules, 19,4122-4132.

    Chemotherapeutic agents for treating cancers show considerable sideeffects, toxicity, and drug resistance. To mitigate the problems, we designed nucleus-targeted, echogenic, stimuli-responsive polymeric vesicles (polymersomes) to transport andsubsequently release the encapsulated anticancer drugs within the nuclei of pancreaticcancer cells. We synthesized an alkyne-dexamethasone derivative and conjugated it to N3−polyethylene glycol (PEG)−polylactic acid (PLA) copolymer employing the Cu2+catalyzed“Click”reaction. We prepared polymersomes from the dexamethasone−PEG−PLA conjugate along with a synthesized stimuli-responsive polymer PEG−S−S−PLA. Thedexamethasone group dilates the nuclear pore complexes and transports the vesicles to thenuclei. We designed the polymersomes to release the encapsulated drugs in the presence ofa high concentration of reducing agents in the nuclei of pancreatic cancer cells. Weobserved that the nucleus-targeted, stimuli-responsive polymersomes released 70% ofencapsulated contents in the nucleus-mimicking environment in 80 min. We encapsulatedthe cancer stemness inhibitor BBI608 in the vesicles and observed that the BBI608encapsulated polymersomes reduced the viability of the BxPC3 cells to 43% in three-dimensional spheroid cultures. Thepolymersomes were prepared following a special protocol so that they scatter ultrasound, allowing imaging by a medicalultrasound scanner. Therefore, these echogenic, targeted, stimuli-responsive, and drug-encapsulated polymersomes have thepotential for trackable, targeted carrier of chemotherapeutic drugs to cancer cell nuclei.

  • Kulkarni P, Haldar MK, Karandish F, Confeld M, Hossain R, Borowicz P, Gange KN, Xia L, Sarkar K, Mallik S 2018Tissue-penetrating, hypoxia-responsive echogenic polymersomes for drug delivery to solid tumors,Chemistry A European Journal, 24, 12490-12494.

    Hypoxia in solid tumors facilitates the progres-sion of the disease, develops resistance to chemo and radiotherapy, and contributes to relapse. Due to the lack of tumor penetration, most of the reported drug carriers are unable to reach the hypoxic niches of the solid tumors. We have developed tissue-penetrating, hypoxia-responsive echogenic polymersomes to deliver anti cancer drugs to solid tumors. The polymersomes are composed of a hy-poxia-responsive azobenzene conjugated and a tissue penetrating peptide functionalized polylactic acid-polyethylene glycol polymer. The drug-encapsulated, hypoxia-responsive polymersomes substantially decreased the viability of pancreatic cancer cells in spheroidal cultures. Under normoxic conditions, polymersomes were echogenic at diagnostic ultrasound frequencies but lose the echogenicity under hypoxia. In vivo imaging studies with xenograft mouse model further confirmed the ability of the polymersomes to target, penetrate, and deliver the encapsulated contents in hypoxic pancreatic tumor tissues.

  • Kulkarni P, Haldar MK, Karandish F, Confeld M, Hossain R, Borowicz P, Gange KN, Xia L, Sarkar K, Mallik S 2018Tissue-penetrating, hypoxia-responsive echogenic polymersomes for drug delivery to solid tumors,Chemistry A European Journal, 24, 12490-12494.

    Hypoxia in solid tumors facilitates the progres-sion of the disease, develops resistance to chemo and radiotherapy, and contributes to relapse. Due to the lack of tumor penetration, most of the reported drug carriers are unable to reach the hypoxic niches of the solid tumors. We have developed tissue-penetrating, hypoxia-responsive echogenic polymersomes to deliver anti cancer drugs to solid tumors. The polymersomes are composed of a hy-poxia-responsive azobenzene conjugated and a tissue penetrating peptide functionalized polylactic acid-polyethylene glycol polymer. The drug-encapsulated, hypoxia-responsive polymersomes substantially decreased the viability of pancreatic cancer cells in spheroidal cultures. Under normoxic conditions, polymersomes were echogenic at diagnostic ultrasound frequencies but lose the echogenicity under hypoxia. In vivo imaging studies with xenograft mouse model further confirmed the ability of the polymersomes to target, penetrate, and deliver the encapsulated contents in hypoxic pancreatic tumor tissues.

  • Kumar KN, Mallik S, Sarkar K, 2017 “Role of freeze-drying in the presence of mannitol on the echogenicity of echogenic liposomes,” Journal of the Acoustical Society of America, 142, 3670-3676.

    Echogenic liposomes (ELIPs) are an excellent candidate for ultrasound activated therapeutics andimaging. Although multiple experiments have established their echogenicity, the underlying mech-anism has remained unknown. However, freeze-drying in the presence of mannitol during ELIPpreparation has proved critical to ensuring echogenicity. Here, the role of this key component in thepreparation protocol was investigated by measuring scattering from freshly prepared freeze-driedaqueous solution of mannitol—and a number of other excipients commonly used in lyophiliza-tion—directly dispersed in water without any lipids in the experiment. Mannitol, meso-erythritol,glycine, and glucose that form a highly porous crystalline phase upon freeze-drying generated bub-bles resulting in strong echoes during their dissolution. On the other hand, sucrose, trehalose, andxylitol, which become glassy while freeze-dried, did not. Freeze-dried mannitol and other crystal-line substances, if thawed before being introduced into the scattering volume, did not produce echo-genicity, as they lost their crystallinity in the thawed state. The echogenicity disappeared in adegassed environment. Higher amounts of sugar in the original aqueous solution before freeze-drying resulted in higher echogenicity because of the stronger supersaturation and crystallinity. Thebubbles created by the freeze-dried mannitol in the ELIP formulation play a critical role in makingELIPs echogenic.

  • Xia L, Karandish F, Kumar KN, Froberg J, Kulkarni P, Gange KN, Choi Y, Mallik S, Sarkar K 2017 “Acoustic characterization of echogenic polymersomes prepared from amphiphilic block copolymers,” Ultrasound in Medicine and Biology, 44, 447-457.

    Polymersomes are a class of artificial vesicles prepared from amphiphilic polymers. Like lipid vesicles(liposomes), they too can encapsulate hydrophilic and hydrophobic drug molecules in the aqueous core and thehydrophobic bilayer respectively, but are more stable than liposomes. Although echogenic liposomes have beenwidely investigated for simultaneous ultrasound imaging and controlled drug delivery, the potential of thepolymersomes remains unexplored. We prepared two different echogenic polymersomes from the amphiphilic co-polymers polyethylene glycol–poly-DL-lactic acid (PEG-PLA) and polyethylene glycol–poly-L-lactic acid (PEG-PLLA), incorporating multiple freeze-dry cycles in the synthesis protocol to ensure their echogenicity. We investigatedacoustic behavior with potential applications in biomedical imaging. We characterized the polymeric vesicles acous-tically with three different excitation frequencies of 2.25, 5 and 10 MHz at 500 kPa. The polymersomes exhibitedstrong echogenicity at all three excitation frequencies (about 50- and 25-dB enhancements in fundamental andsubharmonic, respectively, at 5-MHz excitation from 20g/mL polymers in solution). Unlike echogenic lipo-somes, they emitted strong subharmonic responses. The scattering results indicated their potential as contrastagents, which was also confirmed by clinical ultrasound imaging.

  • Kulkarni P, Haldar MK, Karandish F, Confeld M, Hossain R, Borowicz P, Gange KN, Xia L, Sarkar K, Mallik S 2018Tissue-penetrating, hypoxia-responsive echogenic polymersomes for drug delivery to solid tumors,Chemistry A European Journal, 24, 12490-12494.

    Hypoxia in solid tumors facilitates the progres-sion of the disease, develops resistance to chemo and radiotherapy, and contributes to relapse. Due to the lack of tumor penetration, most of the reported drug carriers are unable to reach the hypoxic niches of the solid tumors. We have developed tissue-penetrating, hypoxia-responsive echogenic polymersomes to deliver anti cancer drugs to solid tumors. The polymersomes are composed of a hy-poxia-responsive azobenzene conjugated and a tissue penetrating peptide functionalized polylactic acid-polyethylene glycol polymer. The drug-encapsulated, hypoxia-responsive polymersomes substantially decreased the viability of pancreatic cancer cells in spheroidal cultures. Under normoxic conditions, polymersomes were echogenic at diagnostic ultrasound frequencies but lose the echogenicity under hypoxia. In vivo imaging studies with xenograft mouse model further confirmed the ability of the polymersomes to target, penetrate, and deliver the encapsulated contents in hypoxic pancreatic tumor tissues.

  • Nahire R, Halder M, Paul S, Margoum A, Ambre AH, Katti KS, Gange KN, Srivastava D K, Sarkar K, Mallik S 2014 “pH-Triggered Echogenicity and Contents Release from Liposomes,” Molecular Pharamaceutics, 11, 4059-4068.

    Liposomes are representative lipid nanoparticles widelyused for delivering anticancer drugs, DNA fragments, or siRNA to cancercells. Upon targeting, various internal and external triggers have been usedto increase the rate for contents release from the liposomes. Among theinternal triggers, decreased pH within the cellular lysosomes has beensuccessfully used to enhance the rate for releasing contents. However,imparting pH sensitivity to liposomes requires the synthesis of specializedlipids with structures that are substantially modified at a reduced pH.Herein, we report an alternative strategy to render liposomes pH sensitiveby encapsulating a precursor which generates gas bubblesin situinresponse to acidic pH. The disturbance created by the escaping gasbubbles leads to the rapid release of the encapsulated contents from theliposomes. Atomic force microscopic studies indicate that the liposomalstructure is destroyed at a reduced pH. The gas bubbles also render theliposomes echogenic, allowing ultrasound imaging. To demonstrate the applicability of this strategy, we have successfully targeteddoxorubicin-encapsulated liposomes to the pancreatic ductal carcinoma cells that overexpress the folate receptor on the surface.In response to the decreased pH in the lysosomes, the encapsulated anticancer drug is efficiently released. Contents releasedfrom these liposomes are further enhanced by the application of continuous wave ultrasound (1 MHz), resulting in substantiallyreduced viability for the pancreatic cancer cells (14%).

  • Nahire R, Hossain R, Patel R, Paul S, Ambre AH, Meghnani V, Layek B, Katti KS, Gange KN, Leclarc E, Srivastava D K, Sarkar K, Mallik S 2014 “Multifunctional polymersomes for cytosolic delivery of gemcitabine and doxorubicin to cancer cells,” Biomaterials, 35, 6482-6497.

    Although liposomes are widely used as carriers of drugs and imaging agents, they suffer from a lack ofstability and the slow release of the encapsulated contents at the targeted site. Polymersomes (vesicles ofamphiphilic polymers) are considerably more stable compared to liposomes; however, they alsodemonstrate a slow release for the encapsulated contents, limiting their efficacy as a drug-delivery tool.As a solution, we prepared and characterized echogenic polymersomes, which are programmed torelease the encapsulated drugs rapidly when incubated with cytosolic concentrations of glutathione.These vesicles encapsulated air bubbles inside and efficiently reflected diagnostic-frequency ultrasound.Folate-targeted polymersomes showed an enhanced uptake by breast and pancreatic-cancer cells in amonolayer as well as in three-dimensional spheroid cultures. Polymersomes encapsulated with theanticancer drugs gemcitabine and doxorubicin showed significant cytotoxicity to these cells. Withfurther improvements, these vesicles hold the promise to serve as multifunctional nanocarriers, offeringa triggered release as well as diagnostic ultrasound imaging.

  • Paul S, Nahire R, Mallik S, Sarkar K 2014 “Encapsulated microbubbles and echogenic liposomes for contrast ultrasound imaging and targeted drug delivery,” Computational Mechanics, 53,413-435.

    Micron- to nanometer-sized ultrasound agents,like encapsulated microbubbles and echogenic liposomes,are being developed for diagnostic imaging and ultra-sound mediated drug/gene delivery. This review providesan overview of the current state of the art of the mathe-matical models of the acoustic behavior of ultrasound con-trast microbubbles. We also present a review of the in vitroexperimental characterization of the acoustic properties ofmicrobubble based contrast agents undertaken in our lab-oratory. The hierarchical two-pronged approach of model-ing contrast agents we developed is demonstrated for a lipidcoated (SonazoidTM)and a polymer shelled (polyD-L-lactic acid) contrast microbubbles. The acoustic and drugrelease properties of the newly developed echogenic lipo-somes are discussed for their use as simultaneous imagingand drug/gene delivery agents. Although echogenicity is con-clusively demonstrated in experiments, its physical mecha-nisms remain uncertain. Addressing questions raised herewill accelerate further development and eventual clinicalapproval of these novel technologies.

  • Nahire R, Halder M, Paul S, Margoum A, Ambre AH, Katti KS, Gange KN, Srivastava D K, Sarkar K, Mallik S 2013 “Polymer Coated Echogenic Lipid Nanoparticles with dual release triggers,” Biomacromolecules, 14, 841-853.

    Although lipid nanoparticles are promising drugdelivery vehicles, passive release of encapsulated contents atthe target site is often slow. Herein, we report contents releasefrom targeted, polymer-coated, echogenic lipid nanoparticles inthe cell cytoplasm by redox trigger and simultaneouslyenhanced by diagnostic frequency ultrasound. The lipidnanoparticles were polymerized on the external leaflet usinga disulfide cross-linker. In the presence of cytosolicconcentrations of glutathione, the lipid nanoparticles released76% of encapsulated contents. Plasma concentrations ofglutathione failed to releasethe encapsulated contents.Application of 3 MHz ultrasound for 2 min simultaneouslywith the reducing agent enhanced the release to 96%. Folicacid conjugated, doxorubicin-loaded nanoparticles showed enhanced uptake and higher cytotoxicity in cancer cells overexpressingthe folate receptor (compared to the control). With further developments, these lipid nanoparticles have the potential to be usedas multimodal nanocarriers for simultaneous targeted drug delivery and ultrasound imaging.

  • Kulkarni P, Haldar MK, Karandish F, Confeld M, Hossain R, Borowicz P, Gange KN, Xia L, Sarkar K, Mallik S 2018Tissue-penetrating, hypoxia-responsive echogenic polymersomes for drug delivery to solid tumors,Chemistry A European Journal, 24, 12490-12494.

    Hypoxia in solid tumors facilitates the progres-sion of the disease, develops resistance to chemo and radiotherapy, and contributes to relapse. Due to the lack of tumor penetration, most of the reported drug carriers are unable to reach the hypoxic niches of the solid tumors. We have developed tissue-penetrating, hypoxia-responsive echogenic polymersomes to deliver anti cancer drugs to solid tumors. The polymersomes are composed of a hy-poxia-responsive azobenzene conjugated and a tissue penetrating peptide functionalized polylactic acid-polyethylene glycol polymer. The drug-encapsulated, hypoxia-responsive polymersomes substantially decreased the viability of pancreatic cancer cells in spheroidal cultures. Under normoxic conditions, polymersomes were echogenic at diagnostic ultrasound frequencies but lose the echogenicity under hypoxia. In vivo imaging studies with xenograft mouse model further confirmed the ability of the polymersomes to target, penetrate, and deliver the encapsulated contents in hypoxic pancreatic tumor tissues.

  • Karandish F, Haldar MK, Xia L, Gange KN, Feng L, You S, Choi Y, Sarkar K, Mallik S  2018Nucleus-targeted, echogenic polymersomes for delivering a cancer stemness inhibitor to pancreatic cancer cells,Biomacromolecules, 19,4122-4132.

    Chemotherapeutic agents for treating cancers show considerable sideeffects, toxicity, and drug resistance. To mitigate the problems, we designed nucleus-targeted, echogenic, stimuli-responsive polymeric vesicles (polymersomes) to transport andsubsequently release the encapsulated anticancer drugs within the nuclei of pancreaticcancer cells. We synthesized an alkyne-dexamethasone derivative and conjugated it to N3−polyethylene glycol (PEG)−polylactic acid (PLA) copolymer employing the Cu2+catalyzed“Click”reaction. We prepared polymersomes from the dexamethasone−PEG−PLA conjugate along with a synthesized stimuli-responsive polymer PEG−S−S−PLA. Thedexamethasone group dilates the nuclear pore complexes and transports the vesicles to thenuclei. We designed the polymersomes to release the encapsulated drugs in the presence ofa high concentration of reducing agents in the nuclei of pancreatic cancer cells. Weobserved that the nucleus-targeted, stimuli-responsive polymersomes released 70% ofencapsulated contents in the nucleus-mimicking environment in 80 min. We encapsulatedthe cancer stemness inhibitor BBI608 in the vesicles and observed that the BBI608encapsulated polymersomes reduced the viability of the BxPC3 cells to 43% in three-dimensional spheroid cultures. Thepolymersomes were prepared following a special protocol so that they scatter ultrasound, allowing imaging by a medicalultrasound scanner. Therefore, these echogenic, targeted, stimuli-responsive, and drug-encapsulated polymersomes have thepotential for trackable, targeted carrier of chemotherapeutic drugs to cancer cell nuclei.

  • Kulkarni P, Haldar MK, Karandish F, Confeld M, Hossain R, Borowicz P, Gange KN, Xia L, Sarkar K, Mallik S 2018Tissue-penetrating, hypoxia-responsive echogenic polymersomes for drug delivery to solid tumors,Chemistry A European Journal, 24, 12490-12494.

    Hypoxia in solid tumors facilitates the progres-sion of the disease, develops resistance to chemo and radiotherapy, and contributes to relapse. Due to the lack of tumor penetration, most of the reported drug carriers are unable to reach the hypoxic niches of the solid tumors. We have developed tissue-penetrating, hypoxia-responsive echogenic polymersomes to deliver anti cancer drugs to solid tumors. The polymersomes are composed of a hy-poxia-responsive azobenzene conjugated and a tissue penetrating peptide functionalized polylactic acid-polyethylene glycol polymer. The drug-encapsulated, hypoxia-responsive polymersomes substantially decreased the viability of pancreatic cancer cells in spheroidal cultures. Under normoxic conditions, polymersomes were echogenic at diagnostic ultrasound frequencies but lose the echogenicity under hypoxia. In vivo imaging studies with xenograft mouse model further confirmed the ability of the polymersomes to target, penetrate, and deliver the encapsulated contents in hypoxic pancreatic tumor tissues.

  • Karandish F, Haldar MK, Xia L, Gange KN, Feng L, You S, Choi Y, Sarkar K, Mallik S  2018Nucleus-targeted, echogenic polymersomes for delivering a cancer stemness inhibitor to pancreatic cancer cells,Biomacromolecules, 19,4122-4132.

    Chemotherapeutic agents for treating cancers show considerable sideeffects, toxicity, and drug resistance. To mitigate the problems, we designed nucleus-targeted, echogenic, stimuli-responsive polymeric vesicles (polymersomes) to transport andsubsequently release the encapsulated anticancer drugs within the nuclei of pancreaticcancer cells. We synthesized an alkyne-dexamethasone derivative and conjugated it to N3−polyethylene glycol (PEG)−polylactic acid (PLA) copolymer employing the Cu2+catalyzed“Click”reaction. We prepared polymersomes from the dexamethasone−PEG−PLA conjugate along with a synthesized stimuli-responsive polymer PEG−S−S−PLA. Thedexamethasone group dilates the nuclear pore complexes and transports the vesicles to thenuclei. We designed the polymersomes to release the encapsulated drugs in the presence ofa high concentration of reducing agents in the nuclei of pancreatic cancer cells. Weobserved that the nucleus-targeted, stimuli-responsive polymersomes released 70% ofencapsulated contents in the nucleus-mimicking environment in 80 min. We encapsulatedthe cancer stemness inhibitor BBI608 in the vesicles and observed that the BBI608encapsulated polymersomes reduced the viability of the BxPC3 cells to 43% in three-dimensional spheroid cultures. Thepolymersomes were prepared following a special protocol so that they scatter ultrasound, allowing imaging by a medicalultrasound scanner. Therefore, these echogenic, targeted, stimuli-responsive, and drug-encapsulated polymersomes have thepotential for trackable, targeted carrier of chemotherapeutic drugs to cancer cell nuclei.

  • Kumar KN, Mallik S, Sarkar K, 2017 “Role of freeze-drying in the presence of mannitol on the echogenicity of echogenic liposomes,” Journal of the Acoustical Society of America, 142, 3670-3676.

    Echogenic liposomes (ELIPs) are an excellent candidate for ultrasound activated therapeutics andimaging. Although multiple experiments have established their echogenicity, the underlying mech-anism has remained unknown. However, freeze-drying in the presence of mannitol during ELIPpreparation has proved critical to ensuring echogenicity. Here, the role of this key component in thepreparation protocol was investigated by measuring scattering from freshly prepared freeze-driedaqueous solution of mannitol—and a number of other excipients commonly used in lyophiliza-tion—directly dispersed in water without any lipids in the experiment. Mannitol, meso-erythritol,glycine, and glucose that form a highly porous crystalline phase upon freeze-drying generated bub-bles resulting in strong echoes during their dissolution. On the other hand, sucrose, trehalose, andxylitol, which become glassy while freeze-dried, did not. Freeze-dried mannitol and other crystal-line substances, if thawed before being introduced into the scattering volume, did not produce echo-genicity, as they lost their crystallinity in the thawed state. The echogenicity disappeared in adegassed environment. Higher amounts of sugar in the original aqueous solution before freeze-drying resulted in higher echogenicity because of the stronger supersaturation and crystallinity. Thebubbles created by the freeze-dried mannitol in the ELIP formulation play a critical role in makingELIPs echogenic.

  • Xia L, Karandish F, Kumar KN, Froberg J, Kulkarni P, Gange KN, Choi Y, Mallik S, Sarkar K 2017 “Acoustic characterization of echogenic polymersomes prepared from amphiphilic block copolymers,” Ultrasound in Medicine and Biology, 44, 447-457.

    Polymersomes are a class of artificial vesicles prepared from amphiphilic polymers. Like lipid vesicles(liposomes), they too can encapsulate hydrophilic and hydrophobic drug molecules in the aqueous core and thehydrophobic bilayer respectively, but are more stable than liposomes. Although echogenic liposomes have beenwidely investigated for simultaneous ultrasound imaging and controlled drug delivery, the potential of thepolymersomes remains unexplored. We prepared two different echogenic polymersomes from the amphiphilic co-polymers polyethylene glycol–poly-DL-lactic acid (PEG-PLA) and polyethylene glycol–poly-L-lactic acid (PEG-PLLA), incorporating multiple freeze-dry cycles in the synthesis protocol to ensure their echogenicity. We investigatedacoustic behavior with potential applications in biomedical imaging. We characterized the polymeric vesicles acous-tically with three different excitation frequencies of 2.25, 5 and 10 MHz at 500 kPa. The polymersomes exhibitedstrong echogenicity at all three excitation frequencies (about 50- and 25-dB enhancements in fundamental andsubharmonic, respectively, at 5-MHz excitation from 20g/mL polymers in solution). Unlike echogenic lipo-somes, they emitted strong subharmonic responses. The scattering results indicated their potential as contrastagents, which was also confirmed by clinical ultrasound imaging.

  • Nahire R, Halder M, Paul S, Margoum A, Ambre AH, Katti KS, Gange KN, Srivastava D K, Sarkar K, Mallik S 2014 “pH-Triggered Echogenicity and Contents Release from Liposomes,” Molecular Pharamaceutics, 11, 4059-4068.

    Liposomes are representative lipid nanoparticles widelyused for delivering anticancer drugs, DNA fragments, or siRNA to cancercells. Upon targeting, various internal and external triggers have been usedto increase the rate for contents release from the liposomes. Among theinternal triggers, decreased pH within the cellular lysosomes has beensuccessfully used to enhance the rate for releasing contents. However,imparting pH sensitivity to liposomes requires the synthesis of specializedlipids with structures that are substantially modified at a reduced pH.Herein, we report an alternative strategy to render liposomes pH sensitiveby encapsulating a precursor which generates gas bubblesin situinresponse to acidic pH. The disturbance created by the escaping gasbubbles leads to the rapid release of the encapsulated contents from theliposomes. Atomic force microscopic studies indicate that the liposomalstructure is destroyed at a reduced pH. The gas bubbles also render theliposomes echogenic, allowing ultrasound imaging. To demonstrate the applicability of this strategy, we have successfully targeteddoxorubicin-encapsulated liposomes to the pancreatic ductal carcinoma cells that overexpress the folate receptor on the surface.In response to the decreased pH in the lysosomes, the encapsulated anticancer drug is efficiently released. Contents releasedfrom these liposomes are further enhanced by the application of continuous wave ultrasound (1 MHz), resulting in substantiallyreduced viability for the pancreatic cancer cells (14%).

  • Paul S, Nahire R, Mallik S, Sarkar K 2014 “Encapsulated microbubbles and echogenic liposomes for contrast ultrasound imaging and targeted drug delivery,” Computational Mechanics, 53,413-435.

    Micron- to nanometer-sized ultrasound agents,like encapsulated microbubbles and echogenic liposomes,are being developed for diagnostic imaging and ultra-sound mediated drug/gene delivery. This review providesan overview of the current state of the art of the mathe-matical models of the acoustic behavior of ultrasound con-trast microbubbles. We also present a review of the in vitroexperimental characterization of the acoustic properties ofmicrobubble based contrast agents undertaken in our lab-oratory. The hierarchical two-pronged approach of model-ing contrast agents we developed is demonstrated for a lipidcoated (SonazoidTM)and a polymer shelled (polyD-L-lactic acid) contrast microbubbles. The acoustic and drugrelease properties of the newly developed echogenic lipo-somes are discussed for their use as simultaneous imagingand drug/gene delivery agents. Although echogenicity is con-clusively demonstrated in experiments, its physical mecha-nisms remain uncertain. Addressing questions raised herewill accelerate further development and eventual clinicalapproval of these novel technologies.

  • Nahire R, Hossain R, Patel R, Paul S, Ambre AH, Meghnani V, Layek B, Katti KS, Gange KN, Leclarc E, Srivastava D K, Sarkar K, Mallik S 2014 “Multifunctional polymersomes for cytosolic delivery of gemcitabine and doxorubicin to cancer cells,” Biomaterials, 35, 6482-6497.

    Although liposomes are widely used as carriers of drugs and imaging agents, they suffer from a lack ofstability and the slow release of the encapsulated contents at the targeted site. Polymersomes (vesicles ofamphiphilic polymers) are considerably more stable compared to liposomes; however, they alsodemonstrate a slow release for the encapsulated contents, limiting their efficacy as a drug-delivery tool.As a solution, we prepared and characterized echogenic polymersomes, which are programmed torelease the encapsulated drugs rapidly when incubated with cytosolic concentrations of glutathione.These vesicles encapsulated air bubbles inside and efficiently reflected diagnostic-frequency ultrasound.Folate-targeted polymersomes showed an enhanced uptake by breast and pancreatic-cancer cells in amonolayer as well as in three-dimensional spheroid cultures. Polymersomes encapsulated with theanticancer drugs gemcitabine and doxorubicin showed significant cytotoxicity to these cells. Withfurther improvements, these vesicles hold the promise to serve as multifunctional nanocarriers, offeringa triggered release as well as diagnostic ultrasound imaging.

  • Karandish F, Haldar MK, Xia L, Gange KN, Feng L, You S, Choi Y, Sarkar K, Mallik S  2018Nucleus-targeted, echogenic polymersomes for delivering a cancer stemness inhibitor to pancreatic cancer cells,Biomacromolecules, 19,4122-4132.

    Chemotherapeutic agents for treating cancers show considerable sideeffects, toxicity, and drug resistance. To mitigate the problems, we designed nucleus-targeted, echogenic, stimuli-responsive polymeric vesicles (polymersomes) to transport andsubsequently release the encapsulated anticancer drugs within the nuclei of pancreaticcancer cells. We synthesized an alkyne-dexamethasone derivative and conjugated it to N3−polyethylene glycol (PEG)−polylactic acid (PLA) copolymer employing the Cu2+catalyzed“Click”reaction. We prepared polymersomes from the dexamethasone−PEG−PLA conjugate along with a synthesized stimuli-responsive polymer PEG−S−S−PLA. Thedexamethasone group dilates the nuclear pore complexes and transports the vesicles to thenuclei. We designed the polymersomes to release the encapsulated drugs in the presence ofa high concentration of reducing agents in the nuclei of pancreatic cancer cells. Weobserved that the nucleus-targeted, stimuli-responsive polymersomes released 70% ofencapsulated contents in the nucleus-mimicking environment in 80 min. We encapsulatedthe cancer stemness inhibitor BBI608 in the vesicles and observed that the BBI608encapsulated polymersomes reduced the viability of the BxPC3 cells to 43% in three-dimensional spheroid cultures. Thepolymersomes were prepared following a special protocol so that they scatter ultrasound, allowing imaging by a medicalultrasound scanner. Therefore, these echogenic, targeted, stimuli-responsive, and drug-encapsulated polymersomes have thepotential for trackable, targeted carrier of chemotherapeutic drugs to cancer cell nuclei.

  • Nahire R, Halder M, Paul S, Margoum A, Ambre AH, Katti KS, Gange KN, Srivastava D K, Sarkar K, Mallik S 2013 “Polymer Coated Echogenic Lipid Nanoparticles with dual release triggers,” Biomacromolecules, 14, 841-853.

    Although lipid nanoparticles are promising drugdelivery vehicles, passive release of encapsulated contents atthe target site is often slow. Herein, we report contents releasefrom targeted, polymer-coated, echogenic lipid nanoparticles inthe cell cytoplasm by redox trigger and simultaneouslyenhanced by diagnostic frequency ultrasound. The lipidnanoparticles were polymerized on the external leaflet usinga disulfide cross-linker. In the presence of cytosolicconcentrations of glutathione, the lipid nanoparticles released76% of encapsulated contents. Plasma concentrations ofglutathione failed to releasethe encapsulated contents.Application of 3 MHz ultrasound for 2 min simultaneouslywith the reducing agent enhanced the release to 96%. Folicacid conjugated, doxorubicin-loaded nanoparticles showed enhanced uptake and higher cytotoxicity in cancer cells overexpressingthe folate receptor (compared to the control). With further developments, these lipid nanoparticles have the potential to be usedas multimodal nanocarriers for simultaneous targeted drug delivery and ultrasound imaging.

Other Researches

  • Contrast Ultrasound Imaging

    Even though ultrasound remains the safest and the most popular (one in every three imaging in the world) means of imaging, its utility is limited due to poor contrast. 20% of the 17 million echocardiography performed in the United States in 2000 were suboptimal, i.e. did not provide definitive diagnosis for coronary heart disease. Microbubbles intravenously injected into patients’ body can enhance the contrast of ultrasound images. A good contrast agent will enable reliable imaging of a

    Read More

  • Cell Mechanics

    In response to an inflammation in the body, leukocytes (white blood cell) interact with the endothelium (interior wall of blood vessel) through a series of steps– capture, rolling, adhesion and transmigration– critical for proper functioning of the immune system. We are numerically simulating this process using a Front-tracking finite-difference method. The viscoelastcity of the cell membrane, cytoplasm and nucleus are incorporated and allowed to change with time in response to th

    Read More

  • Emulsion

    Mixtures of immiscible liquids display a wide spectrum of behaviors, and thereby offer a means of achieving tunable material properties. Often they consist of small fraction of a specialized additive in a less expensive bulk liquid. The liquids phase separate into an emulsion containing discrete droplets of various sizes dispersed in a continuous phase. In industrial processing, the flow continually deforms the suspended drops leading to their coalescence and breakup. The evolving microstruct

    Read More

  • Drops Bubbles

    When a drop is subjected to an external flow, the balance between the interfacial tension and the flow forcing determines the drop shape while the imbalance between them leads to drop breakup. We numerically investigate deformation of a three-dimensional viscous drop forced by a potential vortex and other time-dependent extensional flows. Such flows represent oscillating forces present in multiphase flows such as due to turbulent eddies. The Simulation is performed at non-zero Reynolds number

    Read More

  • Tissue Engineering

    Read More