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Computation of a free jet with embedded drops
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Abstract

An inertialess jet containing Newtonian drops in a gravitation-free field has been modeled by incorporating the
detailed micro-structural dynamics. Interactions of the drops with the continuous phase, with the wall, and with the
jet surface are accounted for, thereby eliminating the need for additional constitutive assumptions. The deformation
of the jet and drops, and the dispersion of drops are predicted. The present paper serves two purposes. First, a
complete description of the modeling process and its limitation is presented. Second, preliminary results for single
and for small clusters of drops indicate the potential inherent in this computational approach. The model flow is
solved in two dimensions using the boundary element method (BEM). Effects of different drop parameters, such as
their number, relative position, and interfacial tension are investigated. © 2002 Published by Elsevier Science B.V.
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1. Introduction

Expansion of a low Reynolds number jet upon exiting from a conduit is commonly known as die-, or
extrudate-swell. It occurs due to the gradual relaxation of the parabolic flow inside the jet to a plug flow
far downstream. The swelling is particularly pronounced in the case of elastic fluids, such as polymer
melts, molten glass or metal or food paste, and therefore, is of utmost importance to processing and
manufacturing industries. However, even a Newtonian jet experiences modest swelling, as was observed
by Middleman and Gavis [1]. The phenomenon has been the subject of extensive theoretical (e.g. [2–7])
and numerical (e.g. [8–16]) investigations.

The present effort was inspired by an experimental observation of Ouddiz [17] (see also [18]) showing
that an emulsion jet issuing into an immiscible medium undergoes considerable swelling, and the sub-
sequent realization that the microstructure of this flow is governed by Newtonian fluid mechanics. As a
motivation for studying particulate flows, Batchelor noted that such flows provide ideal non-Newtonian
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scenarios where the governing equations (Stokes flow of Newtonian fluid) for the microstructural dynam-
ics are readily available [19]. Therefore, one does not require any constitutive modeling, which in itself
is a formidable task. Furthermore, these flows are experimentally realizable systems, displaying most of
the non-Newtonian behavior commonly seen in polymer flows. In the case of emulsions, the tension at
the drop interface readily provides a source of bulk elasticity. Nonisotropic microstructure generated by
deformed drops leads to normal stresses, and nonlinearity in the stress is naturally built into the interact-
ing interface dynamics. In fact, emulsions can be a realistic model for immiscible polymer blends, and
have been applied as such. Finally, their ubiquitous presence in chemical and petroleum industries amply
demonstrates the importance of two-phase flows of Newtonian fluids.

As indicated, die-swell has a long and illustrious history of investigation, and is a rich source of funda-
mental fluid mechanics issues, many yet to be satisfactorily resolved. For instance, the abrupt change in
boundary condition at the lip leads to the classical stick-slip problem. The small-parameter perturbation
analysis of this problem was pioneered by Richardson, who applied the Wiener–Hopf technique [3,4].
Such analytical treatments are notoriously difficult because of the nonlinear boundary condition on the
free surface. Notable analyses are those by Trogden and Joseph for viscous flows with both small and large
surface tensions [5,6], and by Sturges [7] for second-order viscoelastic flows. Early finite element simu-
lation of this phenomenon was attempted by Nickell et al. [8], and then continued by several researchers
[14–16]. Recently, application of special elements near the jet-lip that embody the form of the singularity
in the local stress field has been advocated for performance improvement of finite element analysis [14].
Salamon et al. have performed a detailed finite element study of the planar jet using high resolution quadri-
lateral isoparametric elements with quasi-orthogonal mesh generation [15]. Their investigation includes
validation of the nature of the singularity and the curvature of the free surface suggested in [14], effects
of Reynolds number and capillary number variations, as well as the Navier type slip condition proposed
earlier by Silliman and Scriven [20]. Finite element investigation has been extended to viscoelastic fluids
governed by simple rheological models such as the upper convected Maxwell (e.g. [9]), including some
recent modeling of complex three-dimensional die shapes [16].

Bush and Tanner [10] initiated the boundary element investigation of the problem, which has been subse-
quently extended to viscoelastic fluids governed by a number of constitutive models [12,13]. Here we have
adopted the boundary element method primarily because it is well suited to handle the moving boundary
problem (i.e. both jet and drops). It implements an integral equation formulation for Newtonian–Stokes
flow involving unknowns only on the boundary, and thereby effectively reduces the spatial dimension
of the problem by one. In the case of viscoelastic constitutive equations or flows with inertia, one must
deal with additional volume terms that require further discretization [12,13]. We note that Youngren and
Acrivos have pioneered the use of boundary integral methods for Stokes flow a quarter of a century ago
[21,22], and made seminal contributions to the field of emulsions.

There is an extensive literature on boundary element solution of single or multiple drop deformation
and breakup [23–25], as well as those at finite Reynolds number [26–28]. In this paper, we provide
the mathematical model for the jet emulsion in some detail, briefly delineate the numerical method,
and present some preliminary computations in two dimensions with a small number of drops dispersed
in a jet. The two-dimensionality admittedly restricts the quantitative applicability of our results to any
real problem. However, we believe the formidable difficulty of the problem justifies the present simpler
effort, which has provided valuable insights for future three-dimensional studies. We note that most of
the qualitative understandings are readily transferable to three dimensions. Also, although the present
results are limited to low concentrations of the dispersed phase, new applications come to mind. For
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example, there are processes involving microfluidic patterning or control where the shape of embedded
drops exiting from a nozzle can be important.

2. Mathematical formulation

2.1. Governing equations

Fig. 1 describes the geometry of the flow under investigation. The flow field (that is velocityui and
pressurep) is assumed to satisfy Stokes equation:

−∂ip + µ∇2ui = 0, ∂iui = 0. (2.1)

Inside a drop the same equations hold with viscosityµ replaced byµα, α = 1, . . . , N , whereN is the
number of drops. Across the surface∂Ωα of theα-th drop velocity and tangential traction are assumed
to be continuous. However, the normal stress satisfies the appropriate jump condition:

ni(pij − pαij )nj = σαC, (2.2)

whereC is the curvature of the interface, andσα the interfacial tension. The stress tensorpij follows the
Newtonian constitutive law

pij = −pδij + 2µeij, eij = 1
2(∂iuj + ∂jui). (2.3)

At the rigid wall ∂Ωw, a no-slip condition is imposed. The drop shape is governed by the kinematic
condition

dxi
dt

= ui, (2.4)

for a material pointx ∈ ∂Ωα. The jet issues from the rigid enclosure∂Ωw, and expands in free space,
where the jet surface is denoted by∂Ωf . Its evolution is described by an equation identical to Eq. (2.4)
for x ∈ ∂Ωf . The tangential component of the traction is zero at∂Ωf , and the normal component has a
jump across the surface:

pijnj = niσC, (2.5)

σ being the surface tension at the free surface.

Fig. 1. Jet geometry.
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We nondimensionalize the equations with velocity scaleU0 (e.g. the center-line velocity at∂Ω in)
and the conduit half-widthR. Pressure and stresses are nondimensionalized byµU0/R to arrive at the
following:

−∂ip + ∇2ui = 0, −∂ip + λα∇2ui = 0 insideα-th drop, (2.6)

whereλα = µα/µ. The incompressibility and the kinematic evolution (2.4) remain the same after
nondimensionalization. However, the normal traction conditions (2.2) and (2.5) become

ni(pij − pαij )nj = kαC, (2.7)

and

pijnj = nikC, (2.8)

wherek = σ/(U0µ) andkα = σα/(U0µ) are inverse of capillary numbers at the free and drop surfaces,
respectively. The computational domainΩ is further bounded by a prescribed inlet boundary∂Ω in

sufficiently far upstream from the conduit exit so that a fully developed parabolic flow can be assumed.
Far downstream from the exit, an outlet boundary∂Ωout is provided. The jet is, therefore, inscribed by
∂Ω = ∂Ω in ∪ ∂Ωw ∪ ∂Ωf ∪ ∂Ωout.

We briefly describe the boundary integral method [23] applied here. Using the reciprocal theorem for
Stokes flow, one can obtain an expression for the velocity as follows:

cijui(x0) = −
∫
∂Ω

fi(x)Gij(x, x0)dl(x)+
∫
∂Ω

ui(x)Tijk(x, x0)nk(x)dl(x), (2.9)

where

Gij(x, x0) = −δij ln |x − x0| + (x − x0)i(x − x0)j

|x − x0|2 ,

Tijk(x, x0) = −4
(x − x0)i(x − x0)j (x − x0)k

|x − x0|4 , (2.10)

wheren is the inward normal to the boundary, andfi = pijnj is the traction;cij = 4πδij inside the
domain; 2πδij on a smooth part of the boundary, and zero outside. We note that for a point on the
non-smooth part of the boundary (such as points A, B or E in Fig. 1),cij is not diagonal, but could
be computed by an integral involvingTijk similar to the one in Eq. (2.9). The discretization scheme
adopted here (see the following paragraphs) does not require computation ofcij at such points. With
drops embedded in the jet, we consider the domain of the continuous medium bounded by them, and
the boundary is modified:∂Ω = ∂Ω ∪ ∑N

α=1 ∂Ω
α. Note that the normal to the drop surface points

inward to the domain, i.e. outward on the drop surface. Similarly for flow inside theα-th drop, one can
write:

λαcαiju
∗
i (x0) = −

∫
∂Ωα

f ∗
i (x)Gij(x, x0)dl(x)+ λα

∫
∂Ωα

u∗
i (x)Tijk(x, x0)n

∗
k(x)dl(x), (2.11)

wheren∗ = −n is the normal inward to the drop surface. The asterisk indicates that the variable is defined
for the domain inside the drop. We add modified Eq. (2.9) (with the effects of the drops, i.e.∂Ω replaced
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by ∂Ω) to Eq. (2.11) for each drop, and obtain the following:

[cij + λαcαij ]ui(x0)= −
∫
∂Ω

fi(x)Gij(x, x0)dl(x)+
∫
∂Ω

ui(x)Tijk(x, x0)nk(x)dl(x)

−
N∑
α=1

∫
∂Ωα

�fi(x)Gij(x, x0)dl(x)

+
N∑
α=1

(1 − λα)

∫
∂Ωα

ui(x)Tijk(x, x0)nk(x)dl(x). (2.12)

Note that we have used velocity continuityu∗(x) = u(x) for x ∈ ∂Ωα and

�fi = kαCni. (2.13)

Also note thatλα = 1 removes velocity at theα-th drop surface from inside the integral. This is a
well-known condition for viscosity-matched multiphase boundary element method (BEM) problems,
where the unknowns at the internal surface do not appear explicitly in the equation, and therefore, need
not be explicitly solved at the outset. One can obtain them afterwards by solving for the unknown forces
and velocities at the external surface. For simplicity, all the results presented here are forλα = 1.

2.2. Computational aspects

For computational purposes the inlet and the outlet boundaries∂Ω in and∂Ωout are placed at finite
distances,Lin andLout respectively from the conduit exit (Fig. 1). At the inlet, we assume fully developed
parabolic profile (nondimensionalized by center line velocityU0)

u(x1 = −Lin) = (1 − x2
2); fi(x1 = −Lin) = −pinδi1 − 2x2δi2. (2.14)

Note that the inlet pressurepin, assumed to be laterally uniform, is not known, and has to be solved along
with other variables. At∂Ωout a zero stress condition is imposed, which is equivalent to a fully developed
plane plug flow. One can alternatively impose velocity conditions (constantu1 and zerou2). However,
the zero stress condition seems to be a better option for numerical implementation (see the following
paragraphs).

We discretize all boundaries by inserting points, and interpolate the unknowns as constants over ele-
ments. The integration is performed with 16 Gauss quadrature points per element. The singularities in the
integrand whenx0 → x are analytically accounted for (see Appendix B). The drop and the free surfaces
are described by cubic splines. The inlet∂Ω in is represented by only one element, and the outlet∂Ωout

by four. After performing the integrals, we obtain a linear set of equations for the unknowns, which in
the present case are the inlet pressurepin, the force vectorsf si on the rigid surface∂Ωw, and the velocity
vectorsusi at the moving surfaces, jet (∂Ωf ), drops (∂Ωα;α = 1, . . . , N), and the outlet boundary∂Ωout:

−Ar;inj pin −
∑
s;wall

Ars
ij f

s
i +

∑
s;free

Brs
ij u

s
i +

∑
s;out

Brs
ij u

s
i +

N∑
α=1

∑
s;∂Ωα

(1 − λα)Brs
ij u

s
i − [crij + λcrαij ]uri

= Ar;inj − Br;inj + kAr;free
j +

N∑
α=1

kαAr;αj , (2.15)
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Fig. 2. The steady single phase jet with the discretization of the boundary.

whereA refers to integrals containingGij, andB to those containingTijk. The right-hand side of the above
equations contains known quantities. Explicit expressions for these quantities are obtained in Appendix
A. The indicesr ands are not summed on repetition;r corresponds to the boundary pointx0 where the
velocity is being determined, ands to the boundary points arising from the surface integrals.

2.3. Algorithm

At the outset, we use an iterative process to solve for the shape of the steady, single-phase jet without
drops (Bush et al. [12]). Initially an undeformed straight, free surface is assumed. The set of Eq. (2.15)

Fig. 3. Time-shots at (a)t = 0.09, (b)t = 0.79, (c)t = 5.06, (d)t = 12.47, (e)t = 15.77, fork1 = 0.1 anda = 0.6.
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without the drop terms (those involvingα) is solved for the velocity at the nodes on the jet surface. The
elements on the free surface are reoriented to align them along the streamline defined by the computed
velocity, starting from the first element at the conduit exit (points B and D). The integrals are recomputed
with the new shape to arrive at a new set of coefficients in Eq. (2.15). The process is iterated until a
converged, steady jet is achieved.

The undeformed drops are then introduced inside the jet. Eq. (2.15) is solved to find velocities both on
the drop and the jet surfaces. The computed velocity at the element center is interpolated to the element
nodes, and their new positions are determined using Eq. (2.4). An Euler scheme is applied for the time
integration. Due to the explicit nature of the scheme, the time stepping is limited by numerical capillary
instability�t < �x/(Umaxkmax). The nodes on the drop surface are periodically redistributed to achieve
equal-size elements.

Several brief comments are in order. The initial drop shapes are assumed to be circular on the premise
that given a long enough inlet regionLin, drops will achieve equilibrium shapes corresponding to a steady
pipe flow before reaching the conduit exit. This may or may not be the case, and depending on the
parameter values, one may need different computation lengths. However, note that the method allows
considerable flexibility in the initial positions and shape of drops. Also, the pressure is assumed to be
laterally uniform across the width, which could easily be relaxed by introducing more nodes along∂Ω in,
and would be more appropriate in case fully developed flow is not present there. The other limitation is
at the outlet∂Ωout. Note that the jet width is not known a priori there. In reality it will vary in response

Fig. 4. Time-shots at (a)t = 0.09, (b)t = 0.79, (c)t = 5.06, (d)t = 12.47, (e)t = 15.77, fork1 = 1.0 anda = 0.6.
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to drop motion. However, here it is fixed at the single-phase steady state value at the outset. Even with
the stress (as opposed to a velocity) condition, outlet width cannot vary, and would inhibit the free
surface deformation at the outlet. The traction-free boundary condition imposed at∂Ωout indicates a fully
developed plane plug flow. The axial velocity at∂Ωout can change with time because the jet geometry
∂Ωf is influenced by the time dependent shape and location of the drops. However, the vertical velocity
is stated to be zero at the vertices E and F (Fig. 1). Note that this condition is not exactly matched because
a constant interpolation scheme has been used. The present model is not realistic when the drops are close
to the outlet, which requires a large lateral deformation of the jet. These small discrepancies are believed
to be unimportant when the drops are far from∂Ωout.

3. Numerical Results

As mentioned before, the jet is computationally defined by a finite domain. In this paper, we use
Lin = 3.5 andLout = 8.0 except when stated otherwise (the cases with five drops below). The rigid
part of the wall∂Ωw is discretized with 20 nodes,∂Ωf with 30 nodes, and drops with 40 nodes each.
In this article, calculations have been restricted to the case ofσ = 0 (k = 0) at the jet surface. We
experienced convergence problems in our algorithm for shape of a single-phase jet at nonzero surface

Fig. 5. Time-shots at (a)t = 0.09, (b)t = 0.79, (c)t = 5.06, (d)t = 12.47, (e)t = 15.77, fork1 = 0.05 anda = 0.3, overlayed
on time-shots (dotted line) at the same time instants fork1 = 0.1 anda = 0.6 from Fig. 3.
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Fig. 6. (a) Axial drop position, and (b) maximum lateral extent of the jet as functions of time.
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tensions. This result is possibly related to an observation by Silliman and Scriven [20]. They found
iteration on a kinematic boundary condition at the outlet to be the most effective atk � 1, while a normal
stress condition was superior atk � 1. For zero surface tension, we recovered the result (Fig. 2) of [14]
which is a diameter expansion of∼18% (note that at the drop surface, tension is nonzero). For nonzero
k, one requires an under-relaxation in the iteration scheme for jet shape determination.

We introduce a drop of radiusa = 0.6 along the center-line of the jet at an axial distancex0 = −1.5
(measured from the conduit exit). The rather large drop can also act as a model of a cluster of small drops.
Fig. 3 shows the jet and the drop geometry at five different time instants. The drop is first deformed by the
steady, wall-bounded planar parabolic flow. However, as the drop emerges from the enclosure, it slowly
relaxes as is obvious from the last three time-shots. The jet surface is markedly influenced by the drop
dynamics. We increase the interfacial tension tok1 = 1.0 in Fig. 4, for which we would expect far more
effects on the free surface. And indeed for the same last three time instants shown in Fig. 3, the shapes for
this case are significantly different. Increased tension leads to a quicker relaxation of the drop shape, and
a region of increased jet deformation is seen trailing behind the relaxing drop, with a compensating dip in
front. As has been noted before, the tension at the drop interface serves the same purpose as bulk elasticity,
and therefore, leads to larger swelling. Also, note that the effects of the outlet conditions influence the
last time-shot. One would have to increase the length of the computed jet to obtain realistic data at such
a later time instant. Fig. 5 indicates the effect of drop radius. We introduce a drop of radiusa = 0.3,

Fig. 7. Time-shots at (a)t = 0.1, (b)t = 0.82, (c)t = 6.72, (d)t = 12.15, (e)t = 17.73, fork1 = 0.1 anda = 0.3 for all drops.
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but k1 = 0.05 to keepk1/a = 0.167 the same as that for Fig. 3. Note thatk1/a is the capillary number
inverse based on the drop radius rather than the conduit half-widthR. The time-shots at the same time
instants are overlayed on those from Fig. 3. The smaller radius leads to a decreased drop deformation,
and a quicker relaxation. The effects on the jet surface are similar. In Fig. 6, we plot the drop position, and
the maximum lateral extent of the jet at any point along its boundary as a function of time for these three
different simulations. The position of a drop is determined by finding moments of the drop interface:

xαi =
∫
∂Ωα xi dl∫
∂Ωα dl

, i = 1,2. (3.1)

Unlike the integrals used earlier, a simple trapezoidal rule is used over linear elements described by the
nodes. The drops have very similar speed except for the large drop (a = 0.6) with k1 = 0.1. Because
of its excessive backward deformation (Fig. 3) the drop withk1 = 0.1, a = 0.6 tends to lag. It is seen
that the jet experiences small additional swelling as the drop passes. The oscillating part of the curve for
k1 = 1.0, a = 0.6 is due to surface discretization; the maximum shifts from one node to the next as time
progresses. The oscillation magnitude should be taken as an error bar for the actual physical value. We
see that the increased value ofk1 leads to an increased swelling. However, for the smaller drop, it seems
that as the drop is completely relaxed, the jet surface partially shrinks back. One should finally keep in
mind that the actual value of the effect is quite small.

Fig. 8. Time-shots at (a)t = 0.1, (b)t = 0.82, (c)t = 6.72, (d)t = 12.15, (e)t = 17.73, fork1 = 1.0 anda = 0.3 for all drops.
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Fig. 9. (a) Axial separation between the front drop and those at the back from Figs. 7 and 8, and (b) maximum lateral extent of
the jet.
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As is evident from Eq. (2.12), the drop surface, in the case of a viscosity-matched drop, affects the
dynamics through the third term in right-hand side. The integrandkαCniG(x, x0) increases withkα. The
effect of the drop radius is felt through the curvatureC, as well as closeness to the jet surface, i.e.|x− x0|
is small. The jet swelling is governed not by the magnitude, but by thechange in this term as the drop
moves and deforms. One can also think of the interfacial tension as a force opposing extension of the
area (in this two-dimensional case, the circumscribing length) of a drop. Inside the nozzle, the drop is
extended due to the flow working against the tension, which is relaxed in the jet, releasing the stored
energy. A smaller drop would deform much less due to its larger stiffness, and therefore, would lead to a
smaller effect.

Next, we consider three equal size drops of radiusa = 0.3, placed initially in a triangular configuration
(Fig. 7). Initial drop positions are (−1.5, 0.0), (−2.5,−0.4) and (−2.5, 4.0). The computational domain
is also increased toLin = 6 andLout = 10. Fork1 = 0.1, the drops show considerable deformation,
especially those away from the center-line, and then they relax gradually, leading to further swelling of
the jet. For an increased value of tensionk1 = 1.0, the deformation of the jet surface is predictably more,
and the drops are observed to recover their circular shapes quickly (Fig. 8). Swelling can be augmented
by drops coming together giving rise to a local inhomogeneity in the concentration. In Fig. 9(a), we plot
the lateral separation between the front drop and those at the back. The drops are seen first to increase

Fig. 10. Time-shots at (a)t = 0.09, (b)t = 0.79, (c)t = 5.06, (d)t = 12.47, (e)t = 15.77, fork1 = 0.1 anda = 0.3 for all
five drops.
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separation due to the parabolic profile inside the jet, but then to come closer as they exit the nozzle. The
change in slope fork1 = 0.1 neart = 7 coincides with the elongated tails of the drops at the back coming
out of the exit (see Fig. 7c). Thek1 = 0.1 case relaxes more slowly. Note that this case experiences large
deformation (Fig. 7). On the other handk1 = 1.0 reaches a steady separation length, thereafter being
convected by the plug flow. The maximum half-width of the jet as a function of time plotted in Fig. 9(b)
shows the effect of the faster relaxation for the more elastic drop.

To investigate these effects further we present results for five equal size drops of radiusa = 0.3, placed
at (−4.5, −0.4), (−4.5, 0.4), (3.5, 0.0), (−2.5, −0.4) and (−2.5, 0.4). The size of the computational
domain is increased toLin = 6.0, andLout = 10.0. Figs. 10 and 11 show the evolution fork1 = 0.1
andk1 = 1.0, respectively. As before, the lower interfacial tension case gives rise to significantly more
deformation. However, the effect on the jet surface is more in the other case. The drop configuration leads
to a complex dynamics in this case. We have plotted the separations of the middle drop from those in
the front as well as those in the back in Fig. 12. As can be seen, the drop in the middle catches up with
those in the front within the nozzle due to convection. Again the one withk1 = 1.0 reaches a steady state
faster. The maximum half-width plotted in Fig. 13 shows that the jet with more elastic drops grows more
quickly, but then attains a steady state, while the other slowly continues to grow, and may eventually
reach a larger width.

Fig. 11. Time-shots at (a)t = 0.09, (b)t = 0.79, (c)t = 5.06, (d)t = 12.47, (e)t = 15.77, fork1 = 1.0 anda = 0.3 for all
five drops.
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Fig. 12. Axial separations between the middle drop and those at the back and the front, for (a)k1 = 0.1 (Fig. 10) and for (b)
k1 = 1.0 (Fig. 11).
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Fig. 13. Maximum lateral extent of the jet as a function of time for the five-drop cases (Figs. 10 and 11).

4. Summary

We have developed a model for a two-phase jet that follows the time history of the deformation and
motion of individual drops. Our aim is to provide a detailed description of the non-Newtonian behavior of
the jet resulting from interactions between drops and between the discontinuous and continuous phases.
From the results one can infer the effect of recoil of the drops on the jet. Features of the model include
artificial inlet and outlet boundaries, where the flows have been assumed to be parabolic and plug profiles,
respectively. Neglecting the effects of gravity and inertia, we assumed Stokes flow in the domain occupied
by the two phases. The boundary value problem is solved using the boundary element method in two
dimensions. We investigated cases with one, three and five drops present in the jet. The drop motion is
described for different values of drop radii, interfacial tensions and drop configurations. It is seen that the
interacting drop dynamics presents an interesting time history marked by drop aggregation and relaxation
of their deformation. Various parameters give rise to significant variation in the dynamics of the problem.

Finally, the present work with a few drops is a first step towards describing an emulsion jet. For a large
industry scale process with numerous drops, the approach of course is prohibitively resource intensive,
and therefore, at this point of time, unfeasible. However, the model problem has brought to fore some
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important features of the actual phenomenon. Moreover, a microjet with sparsely embedded drops similar
to the situation studied here has many potential applications in MEMs devices such as inkjets.
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Appendix A

The expressions appearing in Eq. (2.15) are provided below:.

A
r;in
j = −

∫
∂Ω in

G1j (x, xr )dl(x), Ar;inj = −
∫
∂Ω in

2x2G2j (x, xr)dl(x),

Br;inij =
∫
∂Ω in

(1 − x2
2)Tijk(x, xr)nk(x)dl(x), (A.1)

Ars
ij =

∫
∂�s

Gij(x, xr)dl(x), Brs
ij =

∫
∂�s

Tijk(x, xr)nk(x)dl(x), (A.2)

Ar;free
j =

∫
∂Ωf

Gij(x, xr)C(x)ni(x)dl(x), Ar;αj =
∫
∂Ωα

Gij(x, xr)C(x)ni(x)dl(x). (A.3)

�s is thes-th element on the discretized surface. The last expressions are computed by integrating over
smaller elements over the free surface and the drops and summing them.

Appendix B

As is evident from the Eq. (2.10)Gij(x, x0) andTijk(x, x0) are singular in the limitx0 → x, hence
special attention is required while performing the integrals ([23,pp. 177–180]). In this implementation,
only whenx0 is in the same element asx, have we resorted to a special treatment. ForA terms involving
Gij, even though it has an integrable singularity, we subtract the logarithm term fromGij in Eq. (2.10),
and express its integral over the element(la, lb) as follows:∫ lb

la

ln |x − x0| dl(x) = (l0 − la) ln |xa − x0| + (lb − l0) ln |xb − x0| − (lb − la). (B.1)

ForB integrals involvingTijk, we remove the singular element contribution to get the principal value.
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