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Hydrodynamic interactions between a pair of capsules in simple shear are numerically investigated using a
front-tracking finite difference method. The membrane of the capsule is modeled using different hyperelastic
constitutive relations. We also compare the pair interactions between drops to those between capsules. An
increased viscosity ratio leads to a reduced net cross-stream separation between capsules as well as drops after
collision. At low viscosity ratios, for the same capillary number drop-pairs show higher cross-stream separation
than those for capsule-pairs, while substantially large viscosity ratios result in almost the same value for both
cases. We investigate pair-collisions between two heterogeneous capsules C1 and C2 with two different capillary
numbers. The maximum deformation of C1 was seen to increase with increasing stiffness (decreasing capillary
number) of C2, even though the stiffness of C1 was kept fixed. The findings are similar for a drop-pair, however,
with a smaller maximum deformation for the same combinations of capillary numbers. The final cross-stream
drift of the trajectory of C1 decreases with the increasing stiffness of C2, but the relative trajectory between
the capsules remains unchanged. The maximum deformation and the cross-stream drift of the trajectory of C1

are shown to approximately vary with power-law functions of the ratio of the capillary numbers of C1 and
C2. An analytical explanation of the dependence on the two capillary numbers is offered. Different membrane
constitutive laws result in similar deformation and drift in trajectory.

DOI: 10.1103/PhysRevE.92.063029 PACS number(s): 47.63.−b, 87.85.gf, 47.11.−j, 47.61.Jd

I. INTRODUCTION

Blood is a suspension of different types of cell (erythro-
cytes, leukocytes, and platelets) dispersed in plasma. They
differ in size and physical properties such as membrane
stiffness and viscosity; leukocytes are less deformable than
platelets and erythrocytes. The deformability of cells affects
their interactions and the overall effective rheology, which in
turn impact physiological functions [1]. Many cardiovascular
diseases arise from change in cell deformability and shape.
For example, red blood cells (RBC) become stiffer in sickle
cell anemia and malaria [2] restricting their passage through
small arteries leading to reduced oxygen supply. Cells are
complex objects consisting of internal organelles bounded by
a lipid bilayer. Fluid capsules enclosed by an elastic membrane
have become a useful model system for cells. The dynamics
of a single capsule has been studied quite extensively [3–6].
In this paper, we investigate the interactions between a pair of
capsules in free shear varying their deformability. Specifically,
we study the effects of viscosity ratio and heterogeneity (two
capsules having different membrane stiffness).

Hydrodynamic interactions between constituent particles
(such as drops, rigid objects, and cells) play a critical role
shaping the overall rheology of an emulsion or a suspension
[7–10]. Numerical investigations of concentrated suspensions
of capsules have shown that interactions between capsules
influence the rheology [5,8,11], giving rise to shear thinning
[12,13] or a layered structure [14]. The viscosity ratio was also
seen to be an important factor in dynamics; a stable aggregate
is shown to form only at higher cytoplasmic viscosity and
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membrane rigidity [15]. Understanding pairwise interactions
between capsules is the first step towards a complete theory of
multicapsule systems. Barthes-Biesel and coworkers [16,17]
simulated pair-collision between homogeneous capsules in
a shear, analyzing postcollision increase in cross-stream
separation. The separation was found to weakly depend on
the capillary number. The authors also observed that capsules
placed in different shear planes can lead to a net negative de-
flection in the vorticity direction [18]. The magnitude of the net
negative deflection in the vorticity direction is lower than the
shear direction [19]. The size of the computational domain and
boundary conditions were seen to critically affect the capsule
trajectory; smaller periodic domain in the flow direction led
to spiraling trajectories [20,21]. For heterogeneous collisions
between a pair of capsules, simulations have noted that the
stiffer capsule experiences larger cross-stream displacement
[22,23]. There have been subsequent hydrodynamic Monte
Carlo simulations of a binary suspension of stiffer and
floppier capsules in a confined system investigating the role
of heterogeneity in the margination process [24]. However,
the heterogeneous collision between the capsule pair has not
been studied in detail, and therefore felt worthy of further
investigation. We show how the properties of one capsule
affect the trajectory of the other, which might have important
implications in the design of deformability-based cell-sorting
devices [25].

The effects of varying viscosity ratio on the interaction are
also investigated here. For a single capsule, the viscosity ratio
was found to change capsule dynamics from a tank-treading
(TT) to trembling (TR) and eventually to tumbling (TU)
motion [6,26,27]. Note that we recently investigated pair-wise
collision between viscous drops in shear to find that the
presence of finite inertia gives rise to a reversal of the trajectory
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[28], an effect also seen in the case of a capsule pair [20].
An increasing viscosity ratio leads to a reduced postcollision
cross-stream separation for pair collision of drops in a free
shear [29]. We also showed that a pair of viscous drops in a
confined shear after collision comes to the center of the domain
separated by a net stream-wise separation [30]. Although
the membrane provides very different interfacial stresses
compared to those due to a drop simple drop, the similarity
between drops and capsules are self-evident. Therefore, it
is natural to enquire into the difference in their behaviors,
which has not been systematically investigated [31]. Here we
offer a comparative study between pair-collisions of drops and
capsules.

Here we use a front-tracking finite difference method
[32,33] which we have previously applied to viscous [34–38]
and viscoelastic [39–45] drops as well as capsules [3,31]. The
problem setup and mathematical formulation are described
in Sec. II. In Sec. III, we first compare our simulation to a
previous boundary element simulation of interactions between
a pair of homogenous capsules. Then we study the effects of
viscosity ratio on homogenous capsule interactions followed
by collision between a pair of heterogeneous capsules. We
analyze the effects of stiffness on the relative trajectory
between capsules and deformation of the capsules. In Sec. IV,
we summarize the present work.

II. MATHEMATICAL FORMULATION

The mathematical formulation and its front-tracking imple-
mentation [32,35–37] along with constitutive equations for the
membrane have been presented before [3]. Here, we provide a
brief sketch of the same:

∇ · u = 0,

∂(ρu)

∂t
+ ∇ · (ρuu) = −∇p + ∇ · [μ(∇u + (∇u)T )] (1)

−
∫

∂B

fm(x′)δ(x − x′)dS(x′),

where p is the pressure, ρ the density, and μ the viscosity of
the fluid. The density and viscosities are uniform in each phase
and are allowed to have a sharp variation across the membrane
∂B separating them. In this work, the capsules are assumed
to be neutrally buoyant with the same density as that of the
liquid outside. The superscript

T
represents transpose. fm is

the surface traction in the membrane arising as a jump in the
stress condition across the membrane. The surface membrane
force is written as a singular volume force using Dirac delta
function δ(x − x′); the force is present only at the boundary.

A. Membrane constitutive models

The elastic stress in the membrane is determined by
the initial membrane configuration and its deformation state
via two-dimensional constitutive laws. In this paper, three
different laws, neo-Hookean; Skalak; and Evans and Skalak are
considered. The following description closely follows one of
our recent publications [31]. A neo-Hookean membrane (NH)
is a basic hyperelastic model that assumes the membrane to
be an infinitely thin sheet of isotropic volume-incompressible
elastic media. The area of the membrane is allowed to change

and its change is balanced by the thinning of the membrane.
Its strain-energy function is

W = Gs

2
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2
2

)
, (2)

where Gs is the shear modulus, λ1 and λ2 are the principal
stretches on the membrane surface. The principal membrane
stresses are
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Skalak et al. [46] proposed a constitutive model for the
red blood cell membrane (SK) by incorporating the area
incompressibility of the membrane in the stress computations.
The strain-energy function is given as

W = Gs

4
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(
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1λ
2
2 − 1

)2]
.

(4)
The first term of the energy equation is due to the shear of

the capsule whereas the second term involving C represents
the area dilation of the capsule. A large value of C(�1) leads
to an incompressible area of the membrane. The principal
membrane stresses are
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Evans and Skalak [47] simplified the above constitutive
model by adding linearly and independently contributions of
the shear and the dilation (denoted by ES). The principle
membrane stresses are

τm
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]
,

(6)
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[
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2

(
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1

) + A(λ1λ2 − 1)

]
.

At C = 1 and A = 3, the NH, SK, and ES model shows
the same deformation of a capsule in a small deformation
regime, but they show a nonlinear stress-strain relation in large
deformation [48].

B. Numerical implementation

Two equally sized initially spherical capsules with radius a

are placed symmetrically in the computational domain with
initial separations �x0/a, �y0/a, and �z0/a in the three
directions (Fig. 1). Periodic boundary conditions are imposed
in the flow (x) and the vorticity (z) directions. The top and
the bottom walls of the domain move in opposite directions
with velocity U and –U, respectively, resulting in a simple
shear (with rate γ̇ in the y direction). We use a domain size
of 30a × 30a × 5a for cases when both capsules are in the
same shear plane with a discretization level of 288 × 288 ×
48 and 20 480 elements on the surface of each capsule.
We use the radius of the capsules a as the length scale
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FIG. 1. A Schematic of the computational domain showing the
initial position of the pair of capsules.

and the inverse shear rate γ̇ −1 as the time scale to define
dimensionless parameters for the problem: Reynolds number
Re = ρmγ̇ a2/μm, elastic capillary number Ca = μmγ̇ a/Gs ,
viscosity ratio λ = μc/μm. For the case of drops, we use a
capillary number Ca = μmγ̇ a/	, where 	 is the interfacial
tension. Subscripts m and c stand for the matrix and capsules,
respectively. Note that the explicit nature of the code prevents
us from simulation in the Stokes limit. We use a small Reynolds
number of Re = 0.01 as an approximant for Stokes flow in
this paper.

III. RESULTS AND DISCUSSIONS

In this section, we present results of our numerical simula-
tions for hydrodynamic interactions between a pair of capsules
in the free shear in a domain 30a × 30a × 5a after briefly
examining the validity of the code. We analyze the results
for the trajectory of an individual capsule, relative trajectory
between capsules, as well as the deformation of the capsules.
Unless otherwise specified, the capsules are enclosed by an
NH membrane. We also compare to results from interactions
between a pair of drops. Assuming an approximate ellipsoidal
shape of the capsule or drop, we compute Taylor deformation
D = (L − B)/(L + B) from numerically computed capsule
or drop shapes (L and B are the major and the minor axes of
the ellipsoid).

A. Effects of domain size and validation

Although our objective is to simulate pair collision in free
shear, the computational domain is bounded. Domain size
affects the simulated dynamics; a small domain with periodic
boundary condition in the flow direction has shown to result
in spiraling trajectories [20,21] due to interactions between
one capsule coming close to the periodic image of the other.
They cannot be found in free shear. We have previously shown
that a domain size of Lx = 30a is sufficient to achieve a net
cross-stream separation between a pair of drops before they
reach the boundary [29]. The small domain size in the shear
direction also leads to the lateral migration of a drop away
from the bounded wall [30]. Confinement was also shown
to result in wall-induced lateral motion of drops and rigid
spheres postcollision giving rise to swapping [49] or reversed
trajectories [28]. In Fig. 2, we study the effects of domain size
in the shear direction on the relative trajectory of a pair of
capsules. For Ly � 25a, the relative trajectory of the capsules
does not vary with a further increase in domain size, and
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FIG. 2. Relative trajectory of a pair of capsules at Ca =
0.3,�x0/a = 7 and �y0/a = 1 in different computational domains.

after collision achieves a final value of �y/a. However, in
smaller domains, wall confinement leads to the lateral motion
of the capsules before and after collision. We conclude that
the domain size 30a × 25a × 5a chosen here is sufficient to
simulate the pair collision of capsules in free shear.

We also compare our simulations to the results in the
literature. In our previous study, we compared deformation,
orientation angle, and tank-treading period of a single capsule
in free shear [3] with analytical results for small deformation
[4,50] and boundary element method (BEM) simulations [27].
Here, in Fig. 3(a), we compare relative trajectories of colliding
homogeneous capsule pair in a free shear computed here to
those obtained using BEM by Lac et al. [16]. For two initial
separations and two capillary numbers (Ca = 0.30, 0.45) our
results match very well with those obtained using a completely
different method (note that BEM does not suffer from the
limitations of a bounded computational domain). Figure 3(b)
shows the shapes of the capsules at six time instants during
their collision.

B. Effects of viscosity ratio: Different membrane laws and
comparison to drops

For many cells, viscosity of the internal fluid differs from
that of outside. The viscosity ratio significantly changes the
deformation, orientation angle, and tank-trading frequency of
a capsule. A higher viscosity ratio shows increased rotational
flow inside the capsules, and a decreased inclination angle.
Here, we study the effects of viscosity ratio (λ) variation
on the collision between a pair of identical capsules for
different membrane constitutive laws (neo-Hookean [51],
Skalak (C = 1) [46], and Evans & Skalak (A = 3) [47]).
Figure 4(a) plots the deformation of one of them (both be-
having identically) as a function of their flow-wise separation
�x/a. We choose a moderate capillary number Ca = 0.3. The
capsules initially separated by �y0/a in the shear direction
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FIG. 3. (Color online) (a) Comparison of the simulated relative
trajectory of pair of capsules with boundary element simulation of
Lac et al., 2007, (LMB in figure) at λ = 1, different initial separations
and Ca values. (b) Simulated snapshots of the pair of capsules at the
instants shown in (a) for �x0/a = 4 and �y0/a = 0.50.

are driven towards each other (see Fig. 3). During their
approach, they press against each other in the compression
quadrant; the imposed shear flow is a combination of planar
extension and rotation with the compression axis oriented at
135° from the flow direction. Due to the interaction between
capsules in the compression quadrant, the deformation sharply
increases. Subsequently, the capsules pass each other and in
the extensional quadrant (the extensional axis is oriented at
45° to the flow direction) they separate with deformation,
decreasing during relaxation. At large separations, capsules
achieve their equilibrium deformation. As for a single drop or
capsule, the deformation is inhibited by increasing viscosity
ratio. In the inset of Fig. 4(a), we show that an almost linear
decrease of maximum deformation with viscosity ratio is a
feature common to different membrane constitutive equations.
Note that the Skalak model represents strain hardening and
results in the smallest deformation. In contrast, the NH and
ES models result in very similar behaviors with values for NH
slightly less than those of ES as was also seen in our earlier
publication [31].

In Fig. 4(b), we investigate the effects of the viscosity ratio
on the relative trajectory (�y/a as a function of �x/a) of
a pair of neo-Hookean capsules under the same conditions.
Postcollision, the pair achieves a net cross-stream separation
�yfinal/a. �yfinal/a decreases as the viscosity ratio increases as

FIG. 4. (Color online) (a) Deformation vs �x/a of a pair of NH
capsules at Ca = 0.30,�x0/a = 4,�y0/a = 0.5 and different λ (Dmax

as a function of λ for three constitutive laws in the inset, A = 3 for
ES, C = 1 for SK). (b) Relative trajectories for an NH capsule pair
and a drop pair for the same conditions and different λ. Inset shows
the variation of �yfinal/a as a function of λ for the drop and the capsule
pairs.

was also seen for interactions between a pair of viscous drops
in shear [29]. An increased viscosity ratio results in decreased
deformation and quick alignment with the flow, i.e., a reduced
inclination angle. Note that the interactions start earlier along
the approach trajectory at increasing viscosity ratio and leads
to reduced cross-stream displacement.

Figure 4(b) also plots the relative trajectories for a colliding
pair of viscous drops under the same condition for comparison.
The effects of viscosity ratio on the pair collision of viscous
drops were studied before in a Stokes flow [52] as well as in the
presence of finite inertia [29]. The cross-stream separation for
the capsules is smaller than that of the drops for each viscosity
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FIG. 5. (Color online) Shape of capsules (NH) and drops at
Ca = 0.3 and different λ when they are in closest proximity in the
compression quadrant.

ratio. The inset shows that �yfinal/a for capsules is smaller than
that of drops (this is found for other capillary numbers, but not
shown here). Note that the difference of �yfinal/a between the
drop and the capsule cases decreases with increasing λ. At
very large viscosity ratios (λ � 25, not shown here), both will
result in the same �yfinal/a, as viscous effects dominate over
interfacial effects and eventually one obtains the rigid particle
limit of zero �yfinal/a.

In the compression quadrant, when a capsule- or drop-pair
presses each other, a viscous film appears in the gap between
them. Figure 5 compares the drop and capsule cases for
different viscosity ratios at their closest encounters. Here, the
capsule viscosity plays a role. Unlike in deformable drops, film
thickness, in the case of a pair of capsules, does not change
significantly with increasing viscosity ratio. A lower value of
λ results in a higher elongation of the capsule; eventually the
liquid film widens. The hydrodynamic lubrication pressure
eventually causes the membrane to form a dimple. The higher
viscosity of the internal fluid resists the deformation and
eventually the dimple reduces with increasing viscosity ratios.
The interaction effects on the drop trajectory are less than those
for capsules (Fig. 5). Note that a previous BEM simulation has
demonstrated that the film thickness widens with increasing
capillary number [16].

Different membrane constitutive laws do not affect the
capsule dynamics drastically as was also noted before in a
BEM simulation [17]. Note that NH is a strain-softening
model under large deformation. On the other hand, SK is
a strain-hardening model that produces large stresses in the
same deformation [51]. Later, we will explain the effects of
area-dilation modulus in the Skalak model on pair interactions.

C. Heterogeneous collisions: Effects of membrane stiffness and
comparison to drops

As mentioned before, many diseases result from a change
in cell membrane stiffness. In this section, we investigate
collisions between capsules with different membrane stiffness,
or in nondimensional terms, with two different capillary
numbers Ca1 = μγ̇ a/GS1 for capsule C1 and Ca2 = μγ̇ a/GS2

for capsule C2. We fix the stiffness of C1 (Ca1 = 0.3) and vary
the stiffness of C2 (i.e.,Ca2) to see its effects on the dynamics
of C1, and repeat the study for different Ca1. Henceforth,
the results such as deformation D or drift δy = (y − y0)
will always correspond to those of C1. The hydrodynamic
interactions between a pair of capsules are dictated by the flow
field. When the Stokes number (ρcγ̇ a2/μm) of the capsule is
very small (=0.01 in the present study), the capsule tends to
follow the streamlines in the flow field.

In Fig. 6(a), we plot the temporal evolution of the defor-
mation of C1 for different Ca2. As expected, a long time after
collision �x/a � 5, hydrodynamic interactions between the
capsules become negligible, and the deformation of C1 does
not change with further increase of Ca2. However, the peak
deformation (Dmax) of C1, when both capsules press each
other in the compression quadrant, decreases with increasing
Ca2, which at first seems surprising. One can understand
this by noting that the excess deformation of C1 arises due
to interactions with C2; the presence of C2 is felt by the
viscosity mismatch inside C2 and the interfacial elastic force
at its surface. In the present viscosity matched case, the
elastic membrane force represented by Ca2 is the only effect.
Decreasing it, i.e., increasing the C2 membrane stiffness,
increases its effects on the flow that deforms C1. However, also
note that decreasing Ca2 also decreases the deformation of C2,
and thereby decreases its effects on the flow field. Competition
between the two effects would determine the dynamics. Here
we find that the first effect outweighs the second giving rise to
increasing D with decreasing Ca2. In the Appendix, we offer an
analytical argument for the deformation of C1 Dmax ∼ 1/Ca2.

We compare peak deformation of the capsule C1 for
different constitutive models [NH, ES (A = 3) and SK (C =
1)] in the inset of Fig. 6(a). At low Ca2, and correspondingly
higher D, we notice higher difference in Dmax from one
membrane model to the next, but it shows nearly the same value
for NH and ES membrane at higher deformation. The Skalak
model [46] shows the lowest deformation. To understand
this, we plot the deformation of a single capsule in free
shear for these models for different Ca values in Fig. 6(b).
The deformation of NH and ES capsules matches well with
BEM simulations of Ramanujan and Pozrikidis (RP) [27].
In contrast, despite the same value of GS (C = 1), the
Skalak model results in a smaller deformation. Note that the
computation of the membrane force in the present study is
based on the modulus of rigidity of the membrane while RP
computed this by Young’s modulus. For the NH membrane
ν = 0.5 leads to Eh = 2(1 + ν)Gs = 3Gs and therefore our
computed CaNH = 3CaRP. Similarly, for the SK model, v =
C/(1 + C) and C = 1, GSK = GNH = Eh/3.

We also compare the variation of Dmax with Ca2 for
different Ca1 in Fig. 6(c). Dmax, as expected, increases with
increasing Ca1. One could also, on dimensional ground,
argue that Dmax depends on both Ca1 and Ca2. We further
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FIG. 6. (Color online) (a) Effect of the stiffness of C2 on the deformation of C1 (Ca1 = 0.3). both NH capsules. Inset shows the variation
of the Dmax with Ca2 for different models (A = 3 for ES, C = 1 for SK). (b) Comparison of deformation of a single NH capsule for different
constitutive laws with BEM simulation of Ramanujan & Pozrikidis (1998). (c) Variation of Dmax with Ca2 for different Ca1 for NH capsule
pairs. Inset shows the scaling for D∗

max with Ca2/Ca1 along with the empirical fit equation (7).

normalize Dmax by its value for a homogeneous collision,
Dhomo

max corresponding to Ca2 = Ca1 (and therefore the same
value for both capsules). Empirically, we find the following
relation from our simulations

D∗
max

= Dmax/D
homo
max = 1.40{1 − 0.28(Ca2/Ca1)0.275}. (7)

The relation is shown in the inset of Fig. 6(c) to collapse
simulations from many different Ca1 and Ca2 to a single curve.
Even different initial vertical separations �y0 collapse on the
same curve indicating the robustness of the relation. Note that
the relation recovers the value of maximum homogeneous
deformation for Ca2 = Ca1. In the Appendix, we explore

the possible reasoning behind the Ca1/Ca2 scaling. Please
note that the relation (7) is restricted to a viscosity matched
system.

In Fig. 7(a), we plot the trajectory of the center of capsule C1

for different Ca2 to see that the deformability of C2 also affects
the trajectory of the capsule C1. However, we note that the
cross-streamline excursion δy = (y − y0)/a of C1 increases
with increasing Ca2. Note that δy represents excursion of
one capsule C1 from its original location while �y represents
relative separation between C1 and C2. Above, we recognized
two competing ways C2 can affect C1. Here the second effect
dominates, viz., increasing Ca2 increases deformation of C2,
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FIG. 7. (Color online) (a) Effect of Ca2 on the trajectory of C1 for an NH capsule pair. Inset shows δyfinal/a of C1 for different constitutive
laws (ES A = 3, SK C = 1). (b)δyfinal/a versus Ca0.60

2 for Ca1 � 0.10. The inset shows variation of δyfinal/a with Ca2 for Ca1 < 0.10.
(c) Empirical expression (8) plotted along with simulated results for Ca1 > 0.10. The inset shows same plot for Ca1 < 0.10.

which in turn changes the flow around C1 increasing its lateral
drift. One can see that the maximum lateral drift δymax of C1

increases with increasing Ca2. An alternative explanation for
the same observation was offered in Ref. [53] in view of the
dominating effects of the lubrication pressure in the contact
dynamics: the floppy particle deforms in response to the
lubrication pressure whereas the stiffer particle must displace.
In Fig. 7(b), we notice that the net drift (δyfinal) increases
with Ca2, but decreases with increasing Ca1. However, the
variation with Ca2 has different scalings for low and high
Ca1. At low Ca1(<0.1) δyfinal/a ∼ Ca2 [inset of Fig. 7(b)],
but for Ca1 � 0.1, δyfinal/a ∼ Ca0.6

2 . Although a completely
different phenomenon, we parenthetically note that a 0.6 power
scaling of Ca was also found previously for lateral migration
of capsules in free shear [31,54]. Similar to the deformation,

we could obtain an empirical relation by normalizing it with
the value for homogeneous collision

δy∗
final = δyfinal

δyhomo
final

= {0.97 + 0.028(Ca2/Ca1)} Ca1 < 0.1,

δy∗
final = δyfinal

δyhomo
final

= {0.65 + 0.33(Ca2/Ca1)0.6} Ca1 � 0.1

(8)

Results are shown in Fig. 7(c) with different Ca1 and Ca2

collapsing on to a single curve for both regimes [see also
the inset of Fig. 7(c)]. Again as in deformation, different
initial separations fall on the same curve making the relation
independent of initial configuration.
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FIG. 8. (Color online) (a) Relative trajectory of a pair of hetero-
geneous NH capsules at Ca1 = 0.3 and different Ca2. Inset shows
the variation of �yfinal/a with Ca2 for different constitutive laws (ES
A = 3, SK C = 1) at Ca1 = 0.3. (b) Trajectories of the centers of
capsules for three Ca2 at Ca1 = 0.3.

Although the stiffness of the second particle is shown to
have significant effects on particle trajectory (Fig. 7), the
relative trajectory �y/a as a function of �x/a shown in
Fig. 8(a), especially its final value, remains insensitive [see
Fig. 8(a), inset]. It can be understood from Fig. 8(b), where we
see that although the lateral drift of C1 increases with Ca2, that
of C2 concurrently decreases leaving the relative displacement
unchanged. Note that in a heterogeneous collision, the stiffer
particle experiences larger drift velocity [20]. Figure 8(b)
accordingly shows that for Ca2 = 0.1, C2 moves faster than
C1, whereas for Ca2 = 0.9, C1 moves faster. The inset of
Fig. 8(a) plots �yfinal/a versus Ca2 for different constitutive
laws showing nearly identical results for the NH and ES
models, whereas the SK model shows slightly smaller drift.

FIG. 9. (Color online) (a) Comparison of the variation of Dmax

with Ca2 for pair collision of drops and capsules. Comparison of
δyfinal/a between drop and Capsule at two Ca1 values.

The difference in behaviors for the strain hardening SK
(Skalak) model from the NH model even for the same value
of Gs has been previously observed [51]. The area dilation
modulus C affects the deformation and thereby the overall
dynamics, which we investigate below.

We also simulate heterogeneous collision between a pair
of drops to compare the capsule and drop dynamics under
collision. In Fig. 9(a), Dmax for C1 as a function of Ca2 shows
similar dynamics for different values of Ca1 for both drops and
capsules. However, the drop deformation is smaller than that
of the capsule for the same values of Ca1 and Ca2. Previously,
we found that a single capsule deforms more than a drop in
simple shear [31]. Note that the capillary number used here
is a ratio of approximate measures of viscous to capillary
forces for a drop and viscous to elastic membrane forces for a
capsule. The actual forms of capillary and membrane stresses
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FIG. 10. Relative trajectory of a pair of capsules in ho-
mogenous collision at different C for Skalak model at Ca =
0.3,x0/a = 4, and y0/a = 0.5. Inset shows the variation of �yfinal/a

with C. (b) Effect of C on the variation of δyfinal/a of the C1 with Ca2.
Inset shows the plot for Dmax of C1 with Ca2 at different C.

are different. At zero deformation, the drop experiences surface
tension in contrast to a capsule, which experiences no stress.
Therefore, the restoring force is stronger in case of a drop
than in the capsule. In Fig. 9(b) δyfinal/a for drop and capsule
cases are plotted for two different Ca1 values. δyfinal/a shows
a linear variation with Ca2 for Ca1 = 0.05. For a larger value
Ca1 = 0.1, although the drop case still shows linear variation,
the capsule case displays nonlinear variation as also seen above
(∼Ca0.6

2 ) for Ca1 � 0.1 [Figs. 7(b) and 7(c)].

D. Effects of area dilatational modulus in Skalak model

The Skalak model is characterized by the area dilation
coefficient C apart from Gs . In Fig. 10(a), we investigate its

effects on the homogenous pair interaction for Ca = 0.3.
�y/a increases with increasing value of C. It grows quickly at
lower values of C(�1), and then seems to achieve an asymp-
totic value independent of C for larger C [inset of Fig. 10(a)].
Larger values of C lead to a nearly area-incompressible
membrane with area dilation modulus KS = GS(1 + 2C)
dominating over the shear modulus [51]. Indeed deformation
was shown in that article to reach an asymptotic value
at large C. Deformability affects trajectory explaining the
C independent results here. A related effect of the strain
hardening behavior of the Skalak model is that it prevents
capsule from bursting even at large Ca values.

We investigate heterogeneous collisions between capsules
C1 and C2 with two different capillary numbers Ca1 = 0.3
and Ca2 but same C in Fig. 10(b). It plots the net lateral
drift δyfinal/a of C1 for different C as a function of Ca2

for Ca1 = 0.3. At low Ca2, C affects the drift more; it
increases with increasing C, but at high Ca2, the difference
between different C is negligible. The inset shows Dmax of C1

with Ca2 for different C; it decreases with increasing C as
expected.

IV. SUMMARY

We have investigated pair interactions between capsules
encapsulated by an elastic membrane described by three dif-
ferent hyperelastic constitutive models: neo-Hookean, Skalak,
and Evans and Skalak. We show an excellent match of our
simulated results with prior boundary element simulations of
homogeneous capsule interactions. For homogeneous inter-
actions, the maximum deformation of capsules and the net
cross-stream separation �yfinal/a expectedly decrease with
increasing viscosity ratio λ, as λ → ∞ one recovers reversible
Stokes flow dynamics of interacting sphere pairs. A pair of
drops shows higher values of �yfinal/a than those of a pair of
capsules, although the difference between the drop and capsule
cases disappears for very large λ. For heterogeneous collisions
between two capsules C1 and C2, the peak deformation Dmax

of capsule C1 decreases with increased capillary number Ca2

of C2, while the cross-stream drift δyfinal/a of capsule C1

increases. They scale with Ca1/Ca2 both for capsule and
drop pairs. We provide an approximate analytical argument
for the observed scaling in the Appendix. While for the same
conditions Dmax is larger for capsules, δyfinal/a is larger for
drops. Even though δyfinal/a of one capsule (C1) varies with
the variation of the capillary number of the other capsule (C2),
the relative trajectory �yfinal/a does not change. Different
membrane constitutive laws result in very similar behavior.
The area-dilatation coefficient C in the Skalak model, when
increased, gives rise to reduced Dmax and enhanced �yfinal/a

for the other capsule.
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APPENDIX: Ca1/Ca2 SCALING FOR HETEROGENEOUS
SCALING

For heterogeneous collision between two capsules C1 and
C2 of different capillary numbers Ca1 and Ca2, we find that
the maximum deformation [Eq. (7)] and the final lateral shift
[Eq. (8)] both experience a scaling ∼Ca1/Ca2. Here, we
explain the underlying physics and provide an approximate
reasoning for the capillary dependence by investigating effects
of the velocity field of one drop on the other. We express
the flow field outside the capsule C2 due to the free shear in
absence of C1 using the Stokes Green’s function Gij (x,y) and
the corresponding stress Tijk(x,y) as [31,55–57]

uj (x) = u∞
j (x) − 1

8πμm

∫
Ad

f m
i (y)Gij (x,y)dA(y)

+ (1 − λ)

8π

∫
Ad

ui(y)Tijk(x,y)nk(y)dA(y),

Gij (x,y) = δij

|x − y| + (xi − yi)(xj − yj )

|x − y|3 ,

Tijk(x,y) = −6
(xi − yi)(xj − yj )(xk − yk)

|x − y|5 . (A1)

For the case of viscosity matched system (λ = 1) the second
term drops out. u∞

i is the imposed shear. Ad is the surface
of the capsule C2 with outward normal ni(x). f m

i (x) is the
membrane force appearing in Eq. (1) that also is equal to

the jump in fluid traction across the membrane. Note that
for the case of a drop pair this membrane force fm will be
replaced by the appropriate jump in the traction, namely the
surface tension f = 	(∇ · n)n. After nondimensionalizing the
velocity by γ̇ a, and the membrane traction by Gs,2/a (Gs,2 is
the membrane shear modulus of capsule C2) the equation (A1)
(for the velocity outside C2 to be

uj

γ̇ a
(x) = u∞

j

γ̇ a
(x) + u

C2
j

γ̇ a
(x),

(A2)
u

C2
j

γ̇ a
(x) = − 1

8πCa2

∫
Ad

f m
i

Gs/a
(y)

Gij

1/a
(x,y)

dA

a2
(y).

Therefore the velocity due to C2 shows to be scaling
as ∝1/Ca2. The deformation and lateral motion of capsule
C1 is effectively controlled by the imposed shear and this
velocity due to their mutual interactions. In principle, one can
compute now the velocity and deformation of C1 and then
develop a method of reflection to correct the velocity field and
deformation of C2 and so on. For our purpose just the zeroth
order result is sufficient. In that order the extensional part of
the velocity would govern the deformation of C1. Based on
Taylor’s theory of small deformation in the low Ca1 limit one
obtains deformation of C1,

D ∼ Ca1 × (velocity due to C2) ∼ Ca1/Ca2, (A3)

especially when it is scaled by its reference value for
homogeneous collision. One can argue that the lateral drift
follows deformation and shows similar scaling.
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