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Acoustic microstreaming near a plane wall due
to a pulsating free or coated bubble: velocity,

vorticity and closed streamlines

Nima Mobadersany1 and Kausik Sarkar1,†
1Department of Mechanical and Aerospace Engineering, George Washington University,

Washington, DC 20052, USA

(Received 30 July 2018; revised 10 June 2019; accepted 10 June 2019)

Acoustic microstreaming due to an oscillating microbubble, either coated or free, is
analytically investigated. The detailed flow field is obtained and the closed streamlines
of the ring vortex generated by microstreaming are plotted in both Eulerian and
Lagrangian descriptions. Analytical expressions are found for the ring vortex showing
that its length depends only on the separation of the microbubble from the wall
and the dependence is linear. The circulation as a scalar measure of the vortex is
computed quantitatively identifying its spatial location. The functional dependence of
circulation on bubble separation and coating parameters is shown to be similar to
that of the shear stress.

Key words: bubble dynamics, cavitation

1. Introduction
An acoustic wave propagating through a medium can generate a steady streaming

flow, in addition to the sinusoidal movement of the fluid particles, especially near
vibrating elements and bounding walls (Nyborg 1953, 1958; Riley 2001; Tho,
Manasseh & Ooi 2007). Streaming flows when associated with an acoustically
excited microbubble are called microstreaming. They have been observed near a
surface (Kolb & Nyborg 1956), and implicated in numerous harmful and beneficial
bioeffects – haemolysis (bursting of red blood cells) (Rooney 1970; Marmottant
& Hilgenfeldt 2003; Pommella et al. 2015), sonoporation (transient pore formation
on cell walls under ultrasound excitation) (Fan, Kumon & Deng 2014; Aliabouzar,
Zhang & Sarkar 2016), drug delivery (Lentacker, De Smedt & Sanders 2009) and
bone healing (Katiyar, Duncan & Sarkar 2014; Aliabouzar et al. 2016; Zhou et al.
2016; Aliabouzar et al. 2018) – as well as in microfluidics transport (Wang, Jalikop &
Hilgenfeldt 2012), micromixing and acoustic cleaning (Liu & Wu 2009; Orbay et al.
2016). There have also been extensive theoretical and numerical studies elucidating
the phenomena (Nyborg 1958; Wu & Du 1997; Riley 2001; Doinikov & Bouakaz
2010a,b, 2014; Rallabandi, Wang & Hilgenfeldt 2014; Mobadersany & Sarkar 2018).
Recent theoretical studies mostly focused on either the streaming motion near an

† Email address for correspondence: sarkar@gwu.edu

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 4
7.

11
.2

20
.1

76
, o

n 
27

 Ju
l 2

01
9 

at
 0

4:
26

:4
1,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

9.
47

8

https://orcid.org/0000-0003-0701-546X
mailto:sarkar@gwu.edu
https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2019.478


782 N. Mobadersany and K. Sarkar

oscillating bubble in the bulk (Wu & Du 1997; Liu & Wu 2009; Doinikov & Bouakaz
2010a,b) – which might be enhanced due to the presence of a distant wall (Doinikov
& Bouakaz 2014) – or the motion near an oscillating bubble attached to the wall
(Rallabandi et al. 2014, 2015). Here, we investigate the streaming motion, specifically
the closed circular streamlines, due to the periodic oscillations of a bubble near but
detached from a plane wall revisiting the classical analysis of Nyborg (Nyborg 1958).

Lord Rayleigh (Rayleigh 1945) provided the first theoretical explanation of
the acoustic streaming phenomena observed in Kundt’s tube as arising from the
time-averaged nonlinear advection terms, −ρ〈u(1) · ∇u(1)〉t (ρ is density) due to small
oscillatory motion u(1), acting as an inhomogeneous forcing term for the second-order
equation of motion. This was followed in the 1950s by a series of pioneering studies
(Westervelt 1953; Nyborg 1958; Lighthill 1978) that strengthened its theoretical
underpinning. Specifically, Nyborg provided a generalized perturbative analysis of the
streaming velocity near a boundary and offered expressions for the induced stresses
under various conditions, which have been widely used in the literature. Most often
an average expression of shear stress – µuL/δ, where µ is the viscosity, ρ the density,
δ=
√
µ/πρf the Stokes boundary layer thickness, f the frequency and uL the limiting

streaming velocity at the edge of the boundary layer – was used. Rooney (1970)
experimentally observed haemolysis of red blood cells due to a pulsating (20 kHz)
cylindrical bubble (260 µm) resting on a surface, and used this expression along
with a point source in a wall representation of the bubble to determine the critical
shear stress (∼4500 dyn cm−2) for haemolysis. Lewin & Bjorno (1982) computed
the motion of micrometre-sized bubbles excited at megahertz frequencies using the
Rayleigh–Plesset equation, and used the Nyborg expression to estimate a streaming
shear stress of 1.3 kPa on the attached cell membranes with bubble radius of 1 µm
and 20 kPa–3.6 MHz stimulation. Wu (2002) used a modified Rayleigh–Plesset
equation with a shell model due to de Jong, Cornet & Lancee (1994) and the same
expression to show that it can predict a shear stress (∼12 Pa) in the streaming field
of an Optison contrast microbubble at ∼0.1 MPa and 1 or 2 MHz excitation, which
is sufficient for reparable sonoporation in a living cell. Forbes & O’Brien (2012) used
a similar analysis using the Marmottant model (Marmottant et al. 2005) for the shell
to predict an increase of sonoporation activity with excitation, maximum sonoporation
and its drop-off after collapse.

Wu & Du (1997) computed the microstreaming flow field inside and outside an
isolated microbubble oscillating in the field of a plane ultrasound wave by accounting
for the monopole volume pulsation and the dipole translation motion in the spherical
geometry. The results later were further generalized by removing restrictions on bubble
size relative to the wavelength and considering viscous effects in the whole domain
(Doinikov & Bouakaz 2010a,b). Detailed analytical theories have also been developed
by Doinikov & Bouakaz (2014) to show that the microstreaming near an oscillating
bubble increases considerably due to the presence of a distant rigid wall or in the
presence of a second bubble (Doinikov & Bouakaz 2016), especially when they are
driven at their resonance frequency.

Here, we consider microstreaming near a rigid wall due to a nearby oscillating
microbubble detached from a nearby rigid wall. Krasovitski & Kimmel (2004) were
the first to consider such a case; they used an axisymmetric boundary element
method to obtain the first-order oscillating potential flow u(1) and then they used the
Nyborg expression to compute the shear stress on the plane wall. Recognizing that
typically the streaming motion is generated by small-amplitude oscillation, Doinikov
& Bouakaz (2010a,b) used the linearized Rayleigh–Plesset equation to obtain the
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Acoustic microstreaming near a plane wall due to pulsating bubble 783

first-order velocity in a pioneering theoretical study of sonoporation. They also used
the Nyborg expression to compute the shear stress, and under a number of reasonable
assumptions provided an expression for sonoporation efficiency in a bubble-cell
suspension. However, none of the past studies investigated closed streamlines of the
microstreaming flow field near the wall due to a detached oscillating bubble. On
the other hand, an array of different streaming motions have been observed with
varying viscosity and excitation amplitude (Elder 1959), including flow direction
reversal or secondary inner circulation over a vibrating tip (Kolb & Nyborg 1956).
Different streaming flows – vortex, dipolar or quadrupolar – were observed for
a larger (radius 230–270 µm) bubble excited at lower (2–9 kHz) frequencies
(Tho et al. 2007; Collis et al. 2010; Thameem, Rallabandi & Hilgenfeldt 2016).
Collis et al. argued that a streaming motion pattern can be utilized to improve
sonoporation and sonothrombolysis. Miller (1988) noted a streaming flow radially
inward over an ultrasonically activated micropore, rather than outward as expected
from the theory. For a two-dimensional bubble attached to a wall, detailed analysis
and experiments showed both ‘fountain’ (streamlines inward at the wall) and
‘anti-fountain’ (streamlines outward at the wall) flows are possible depending on
the excitation frequency (Rallabandi et al. 2014). Such diversity of streaming motions
and their possible applications in medical and microfluidic technology underscore the
importance of a detailed study of the streamline pattern.

In this study, we offer an analytical description of the streamlines due to a free
as well as a coated ultrasound contrast microbubble undergoing small-amplitude
oscillation near a rigid plane wall, investigating the dependence of the phenomenon
on different flow parameters. Given the importance of Nyborg’s classic analysis of
the streaming phenomenon, his results were obtained recasting the analysis in the
standard terminology of the modern perturbation method justifying in detail the order
of various terms, and their retention and elimination. The novelty of the present
study stems from the computation of the vertical component of the streaming velocity
that has been used to plot for the first time the closed Eulerian and Lagrangian
streamlines of the vortex structure of the microstreaming flows along the wall for
both free and coated bubbles. The length and width of the vortex structure were
studied relating them to the flow geometry. An objective vortex identification scheme,
the d-2 method (Vollmers 2001), is used to determine the spatial extent of the vortex
and the circulation. The variation of circulation and vorticity was related to that of
the shear stress at the wall.

2. Mathematical formulation
We investigate the microstreaming phenomenon over a wall due to an oscillating

bubble of initial radius R0 at a distance h from the wall (figure 1). Theoretical analysis
of microstreaming solves the governing equations by a perturbative method (Nyborg
1953, 1958):

u= u(1) + u(2) + · · ·
p= p(1) + p(2) + · · · .

}
(2.1)

The first-order approximation u(1) solves the linearized equation neglecting the
nonlinear advection terms and obtains a sinusoidal velocity. To properly understand
the perturbative nature of the problem, we note that for a bubble of initial radius R0
executing oscillation with a small amplitude εR0, ε� 1, u(1) ∼ U = εωR0, ω = 2πf .
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FIGURE 1. (Colour online) Schematic of the problem.

At the second order, the convective nonlinear term, quadratic product of u(1), appears
as a forcing term, with the equation upon averaging becoming

µ∇2
〈u(2)〉t −∇〈p(2)〉t =F= ρ〈u(1) · ∇u(1)〉t, (2.2)

with ρ and µ being the fluid intensity and viscosity. Here 〈 〉t is the average over the
time period of the oscillating excitation. Note that the resulting streaming motion has
been named Rayleigh–Nyborg–Westervelt streaming by Lighthill (1978) in contrast
to Stuart streaming (Stuart 1966). The underlying approximation is only valid when
bubble streaming Reynolds number Rebs is small. In anticipation of the streaming
velocity ∼U2/ωR0 (see equation (2.22) below) and the length scale δ =

√
2ν/ω (ν =

µ/ρ), one obtains (Davidson & Riley 1971; Marmottant & Hilgenfeldt 2003) Rebs =

ε2(2ωR2
0/ν)

1/2
= ε2(2Reb)

1/2, with Reb = ωR2
0/ν being the Reynolds number of the

bubble motion. We will later show that Rebs is small in the present case.
An oscillating bubble near a wall experiences a secondary attractive Bjerknes force

towards the wall due to the wall-induced image bubble. The force is second order
in nature and would introduce a translation towards the wall. We have neglected this
effect here as was done in many studies in the literature (Doinikov & Bouakaz 2014).
Batchelor (1967) offered a potential flow estimation of the force using the virtual mass
2ρπR3

0/3 of the bubble situated at distance h from the wall to be ε2πρω2R6
0/(2h2).

Equating with the Stokes drag, one obtains a velocity of U/ωR0 = ε
2Reb/[12(h/R)2].

For sufficiently small ε and large h/R (these are also the assumptions for this analysis
of Bjerknes force to be valid), this velocity remains small for the stationary bubble
assumption adopted here to be valid. The boundary layer being δ=

√
2ν/ω, the steady

viscous streaming field examined here can be expected to be established within a few
time periods (∼ω−1) as was observed in experiment (personal communication with
Professor Rallabandi). Close to the wall, the bubble oscillation would cease to be
spherical; it would experience shape oscillations and complex streaming patterns that,
in the case of a drug-loaded contrast microbubble, can enhance the transport of drugs
(Lajoinie et al. 2018).
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Acoustic microstreaming near a plane wall due to pulsating bubble 785

Averaging the quadratic term in (2.2) gives rise to a steady force that drives the
streaming motion. Nyborg (1958) noted that the formal solution of this problem
requires that boundary conditions be satisfied on the exact boundary, which is
possible only for simple boundaries (plane, hemisphere, etc.) with the simplest
velocity distributions on them (see Fabre et al. (2017) where the authors had to
resort to finite-element solution for the first- and the second-order problems between
two spheres). For a more general situation, Nyborg sought an alternative method.
Following an earlier investigation of Schlicting (1979), he made a key observation
that one does not need the solution for the entire region (with dimension L, here
equal to R0), but only in the near-boundary region (dimension δ). With a number of
ingenious approximations, Nyborg was able to obtain an expression of the streaming
motion that depends on the surface values of the potential part of the first-order
velocity. Nyborg’s description of the pioneering work was often terse, intuitive without
adequate reasoning for the assumed order of the terms and their retention, and based
on a formulation with a finite sound speed later simplified using an ‘approximate
incompressibility’ assumption. Furthermore, it was solved in Cartesian coordinates
allowing modifications for slight curvilinearity. We provide a description of the
mathematical derivation in radial coordinates under the assumption of axisymmetry
detailing the various approximations which would be helpful for understanding several
key features of the perturbative approach.

2.1. Linear oscillatory field at first order
The fluid velocity and pressure u(x, t) and pressure p(x, t) solve the Navier–Stokes
equation

∂u
∂t
+ u · ∇u=−

1
ρ
∇p+ ν∇2u,

∇ · u= 0,

 (2.3)

with ν=µ/ρ being the kinematic viscosity. With the perturbation expansion (2.1), and
using a time-periodic expression for the first-order field

u(1)(x, t)= u1(x)eiωt, p(1)(x, t)= p1(x)eiωt, (2.4a,b)

one obtains for the momentum equation at O(ε)

iωu1 =−
1
ρ
∇p1 + ν∇

2u1. (2.5)

Equation (2.5) is solved using a Helmholtz decomposition

u1 = uϕ + uA, uϕ =∇ϕ, ∇2ϕ = 0, uA =∇× A, ∇ · A= 0. (2.6a−e)

Note that the generality of the Nyborg formulation (Nyborg 1958) is premised on
finding the velocity in terms of values of the potential component uϕ and its derivative
at the boundary. The vortical part uA satisfies

(∇2
+H2)uA, H2

=−iω/ν, H = (1− i)
√
ω

2ν
= (1− i)β, (2.7a−c)
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786 N. Mobadersany and K. Sarkar

where the sign of H was chosen for decaying solution of exp(−iHz). The solution
has the typical structure of Stokes boundary layer for an oscillatory outer driving
flow uϕ (of order ∼U and varying in a large scale ∼L) near a wall with boundary
layer thickness δ = 1/β � L. We seek solution (u, w) in an axisymmetric geometry.
Accordingly, the solution of the radial component uA is straightforward and chosen to
ensure a zero tangential velocity countering uϕ as

uA =−uϕe−iHz. (2.8)

It satisfies (2.7). The axial component wA is chosen as

wA =−
Γ

ih
e−iHz, Γ =−

∂wϕ

∂z
=

1
r
∂

∂r
(ruϕ). (2.9a,b)

Due to (2.6), wϕ and Γ are harmonic, and therefore (2.9) satisfies (2.7). We note
that

∇ · uϕ =
1
r
∂

∂r
(ruϕ)+

∂wϕ

∂z
= 0, (2.10)

to obtain

∇ · uA =−
1
r
∂

∂r
(ruϕ)e−iHz

−
∂wϕ

∂z
e−iHz
+

1
iH
∂2wϕ

∂z2
e−iHz
≈ 0, (2.11)

the last term being higher order in the small quantity δ/L compared to the first two
terms and therefore was neglected here as well as below (effectively Γ being treated
as approximately a constant). The velocity uϕ + uA however does not satisfy the zero
normal velocity condition at z = 0 due to wA. Correcting for that, a modified total
first-order velocity is found as

u= uϕ + uA +wcêz, wc = Γ /iH, (2.12a,b)

keeping in mind that the non-decaying wc is only meaningful while considering the
velocity field in the small boundary layer region. Therefore, one obtains the time-
periodic first-order velocity field (superscript (1) indicates the corresponding term with
periodic time dependence included):

u(1) = u(1)ϕ + u(1)A = uϕ[cosωt− e−βz cos(ωt− βz)],

w(1)
=w(1)

ϕ +w(1)
c +w(1)

A =wϕ cosωt

+
Γ
√

2β
[cos(ωt−π/4)− e−βz cos(ωt− βz−π/4)].

 (2.13)

This expression is consistent with Nyborg (1958).

2.2. Streaming at second order
At the second order, one observes the forcing term F on the right-hand side of the
average Stokes equation (2.2). As was noted by Nyborg, quadratic product of the
irrotational part uϕ=∇ϕ does not contribute to streaming and can balance the pressure
gradient term as in Bernoulli term

−∇p2 = uϕ · ∇uϕ = 1
2∇(|∇ϕ|

2), (2.14)
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Acoustic microstreaming near a plane wall due to pulsating bubble 787

reducing (2.2) into

µ∇2
〈u(2)〉t =F= ρ〈(u(1)A +w(1)

c êz) · ∇u(1)ϕ + u(1) · ∇(u(1)A +w(1)
c êz)〉t. (2.15)

Therefore, the forcing term in the r-direction becomes

Fr = ρ〈u(1)A · ∇u(1)ϕ +w(1)
c êz · ∇u(1)ϕ + u(1) · ∇u(1)A 〉t

= ρ 〈u(1)A ∂ru(1)ϕ +w(1)
A ∂zu(1)ϕ +w(1)

c ∂zu(1)ϕ
+ u(1)ϕ ∂ru

(1)
A + u(1)A ∂ru

(1)
A +w(1)

ϕ ∂zu
(1)
A +w(1)

c ∂zu
(1)
A +w(1)

A ∂zu
(1)
A 〉t. (2.16)

Noting the order of terms

uϕ ∼ uA ∼U,
wA ∼wc ∼ δU/L,

∂ruϕ ∼ ∂zuϕ ∼ ∂ruA ∼U/L,
∂zuA ∼U/δ,

 (2.17)

and neglecting higher order in δ/L, we obtain

Fr = ρ〈u
(1)
A ∂ru(1)ϕ + u(1)ϕ ∂ru

(1)
A + u(1)A ∂ru

(1)
A +w(1)∂zu

(1)
A 〉t. (2.18)

Each term on the right-hand side is O(U2/L). In an effort to express each term in
terms of uϕ and ∂ru(1)ϕ , following Nyborg, we express the odd term wϕ in (2.13) as

wϕ ≈ z
(
∂wϕ

∂z

)
z=0

=−
z
r

[
∂

∂r
(ruϕ)

]
z=0

. (2.19)

Note that with (2.19) wϕ ∼ δU/L and therefore w(1)
ϕ ∂zu

(1)
A in (2.18) is also O(U2/L)

consistent with the other terms there. After substituting (2.13) in (2.18) averaging over
time, one obtains

Fr =
ρ

2
(uϕ∂ruϕ(e−2βz

− 2e−βz cos βz)

− uϕ(1/r)∂r(ruϕ)e−βz
{βz(cos βz+ sin βz)− sin βz}) . (2.20)

In the governing equation (2.15) in the second order, we note that the vertical (z)
derivative is larger than the transverse (r) derivative by O(L/δ) to obtain〈

∂2u(2)

∂2z

〉
t

=−
Fr

µ
. (2.21)

Integrating and noting (2.9), we get

〈u(2)〉t =
1
ω

(
1
2
∂u2

ϕ

∂r
(uα − uβ)−

u2
ϕ

r
uβ

)
, where

uα =
1
4

e−2βz
+ e−βz sin βz−

1
4
,

uβ =
1
2
βze−βz(cos βz− sin βz)− e−βz

(
sin βz+

1
2

cos βz
)
+

1
2
,


(2.22)

as was also found by Nyborg (1958).
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788 N. Mobadersany and K. Sarkar

The vertical component of streaming velocity 〈w(2)
〉t – not found in the literature

but critical for plotting streamlines – is obtained by using the equation of mass
conservation and taking into account the no-slip condition on the rigid wall:

〈w(2)
〉t =

∫ z

0
−

1
r
∂(r〈u(2)〉)

∂r
dz

=−
1

2ω

(
1
r
∂u2

ϕ

∂r

)

×

(
−

1
8β

e−2βz
−

1
4β

e−βz(6βz sin βz+ 8 sin βz+ 14 cos βz)−
7
4

z+
29
8β

)
−

1
2ω

(
∂2u2

ϕ

∂r2

)

×

(
−

1
8β

e−2βz
−

1
4β

e−βz(2βz sin βz+ 4 sin βz+ 6 cos βz)−
3
4

z+
13
8β

)
. (2.23)

Here the z-dependence of ∂u2
ϕ/∂r and ∂2u2

ϕ/∂r2 is neglected in the boundary layer
similar to what was assumed in (2.20). The acoustic streaming velocity field is
therefore known in terms of the outer irrotational velocity field. One can compute
the shear stress on the wall (Nyborg 1958) as

τwall = µ
∂〈u(2)〉t
∂z

∣∣∣∣
z=0

=
ρ0

4β
uϕ
∂uϕ
∂r

∣∣∣∣
z=0

. (2.24)

2.3. Lagrangian streaming velocity

For comparison with the average path of a tracer particle, it was noted before that
one would also need to find the Lagrangian or particle-averaged streaming velocity
(Nyborg 1958) which contains an additional Stokes drift term

〈uT〉t =

〈(∫
u(1) dt

)
· ∇u(1)

〉
t

, (2.25)

expressed in terms of the first-order velocity given in (2.13). For the radial component,
one can obtain

〈u(1)T 〉t =

〈(∫
u(1) dt

)
∂ru(1)

〉
t

+

〈(∫
w(1)
ϕ dt

)
∂zu(1)ϕ

〉
t

+

〈(∫
w(1)

A dt
)
∂zu(1)ϕ

〉
t

+

〈(∫
w(1)

c dt
)
∂zu(1)ϕ

〉
t

+

〈(∫
w(1)
ϕ dt

)
∂zu

(1)
A

〉
t

+

〈(∫
w(1)

A dt
)
∂zu

(1)
A

〉
t

+

〈(∫
w(1)

c dt
)
∂zu

(1)
A

〉
t

. (2.26)

Using (2.19) and (2.17), we realize that the second, third and fourth terms involving
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Acoustic microstreaming near a plane wall due to pulsating bubble 789

∂zu(1)ϕ are higher order in the small quantity δ/L than the others. The first term is
identically zero. We obtain

〈uT〉t =
1

2ω

(
1
2
∂u2

ϕ

∂r
+

u2
ϕ

r

)
uε,

where uε = βze−βz(cos βz− sin βz)− e−βz cos βz+ e−2βz. (2.27)

Nyborg (1958) stressed that the vertical component is much smaller. However, it is
critical for computing the streamlines and can be found by using continuity:

〈wT〉t =

∫ z

0
−

1
r
∂(r〈uT〉)

∂r
dz

=
1

4ωβ

(
1
2
∂2u2

ϕ

∂r2
+

3
2r
∂u2

ϕ

∂r

)
(−2βze−βz sin βz− 2e−βz cos βz+ e−2βz

+ 1). (2.28)

Note that Raney, Corelli & Westervelt (1954) found that adding this correction
improved the comparison of theory with experimental observation of streaming near
a cylinder.

2.4. Potential velocity uϕ due to oscillating bubble above a rigid surface
The problem of a bubble of initial radius R0 near a plane rigid wall at a distance h
from the wall is equivalent to two bubbles of the same initial radius separated by a
distance of 2h; it satisfies the impermeability condition in the plane of the rigid wall.

The velocity potential φ of the fluid around the microbubble is

ϕ =−

(
1
S1
+

1
S2

)
ṘR2, (2.29)

where S1 and S2 are the distances from the centre of the real and image microbubbles
to the desired location in the fluid and Ṙ and R are the velocity and instantaneous
radius of the microbubble. The radial and vertical components of the irrotational
velocity ∇ϕ are

u(ϕ) = uϕ cosωt= ṘR2

(
r

(r2 + (z− h)2)3/2
+

r
(r2 + (z+ h)2)3/2

)
,

w(ϕ)
=wϕ cosωt= ṘR2

(
z− h

(r2 + (z− h)2)3/2
+

z+ h
(r2 + (z+ h)2)3/2

)
.

 (2.30)

Here uϕ and wϕ are time-independent parts of the potential velocity components in
radial and vertical directions and r and z are the radial and vertical coordinates. The
instantaneous bubble radius R and velocity Ṙ are described by the Rayleigh–Plesset-
type equation

ρ

(
RR̈+

3
2

Ṙ2

)
= Pb − P0 + Pex sinωt,

Pb = Pg0

(
R0

R

)3κ

−
4µṘ

R
−

2γ
R
− Psc(h, t),

Psc(h, t)= ρ
R
2h
(RR̈+ 2Ṙ2).


(2.31)
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790 N. Mobadersany and K. Sarkar

Here Pb is the fluid pressure adjacent to the microbubble, P0 is the ambient pressure
(100 kPa) and Pex is the ultrasound excitation amplitude. Parameter γ is the gas–fluid
surface tension, Pg0 is the initial gas pressure inside the microbubble and κ is the
polytropic constant. Note that the impermeability at the wall is accounted for by the
effect of the wall being considered as a pressure Psc(h, t) scattered from the image
bubble located at a distance 2h from the real bubble.

2.5. Linearized bubble dynamics and streaming fields

Assuming that the microbubble is pulsating with a small amplitude R = R0(1 + x),
equation (2.31) is linearized in x. Non-dimensionalizing t and Pex as t∗= tω and P∗ex=

Pex/P0 results in an equation of damped harmonic oscillator

ẍ+
(

4
Reb(1+ R0/2h)

)
ẋ+

(
3κEub

1+ R0/2h
+

6κ − 2
Web(1+ R0/2h)

)
x=

P∗exEub sin(ωt)
1+ R0/2h

,

(2.32)

where

Reb =
ρR2

0ω

µ
, Eub =

P0

ρR2
0ω

2
, Web =

ρR3
0ω

2

γ
, (2.33a−c)

are the characteristic Reynolds (we have taken R0ω as the velocity scale), Euler and
Weber numbers. And

ω2
0

ω2
=

3κEub + (6κ − 2)/Web

(1+ R0/2h)
,

δt =
4ω

Reb(1+ R0/2h)ω0
,

 (2.34)

where ω0 and δt are the circular natural frequency and the damping term of the
microbubble. Note that the natural frequency is modified due to the presence of the
wall by the factor (1 + R0/2h)−1. The analytical solution of equation (2.32) in the
steady region is

x=
EubP∗ex sin(ωt+ φ)

Zm(1+ R0/2h)
= ξm sin(ωt+ φ), (2.35)

where Zm =
√
(δtω0/ω)2 + (1/ω4)(ω2

0 −ω
2)2 is the non-dimensional absolute value of

impedance and φ is the oscillation phase that can be absorbed by redefining time as
t′= t∗+ φ/ω. As a result the irrotational velocity uϕ from equation (2.30), when non-
dimensionalized by R0ω, becomes
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Acoustic microstreaming near a plane wall due to pulsating bubble 791

u∗ϕ =
ξm

r∗2


1(

1+
(

z∗ − h∗

r∗

)2
)3/2 +

1(
1+

(
z∗ + h∗

r∗

)2
)3/2



∣∣∣∣∣∣∣∣∣∣∣
z∗=0

=
2ξm

r∗2
(

1+
(

h∗

r∗

)2
)3/2 , (2.36)

∂u∗ϕ
∂r∗
=

ξm

r∗3
(

1+
(

z∗ − h∗

r∗

)2
)3/2

 3(
z∗ − h∗

r∗

)2
(

1+
(

z∗ − h∗

r∗

)2
) − 2


∣∣∣∣∣∣∣∣∣∣

z=0

+
ξm

r∗3
(

1+
(

z∗ + h∗

r∗

)2
)3/2

 3(
z∗ + h∗

r∗

)2
(

1+
(

z∗ + h∗

r∗

)2
) − 2


∣∣∣∣∣∣∣∣∣∣

z=0

=
2ξm

r∗3
(

1+
(

h∗

r∗

)2
)3/2

 3(
h∗

r∗

)2
(

1+
(

h∗

r∗

)2
) − 2

 , (2.37)

with a similar expression for w∗ϕ . Note that in conformity with the approximation that
u∗ϕ varies in a larger scale (h and R0) compared to the boundary layer thickness δ,
the expressions were evaluated at the wall z= 0. Correspondingly, shear stress (2.24)
non-dimensionalized with respect to P0 becomes

τ ∗ =
2ξ 2

mr∗

Eub(2Reb)1/2h∗5
(1− 2r∗2/h∗2)
(1+ r∗2/h∗2)4

. (2.38)

2.6. Effects of translation of microbubble

An oscillating microbubble translates towards the wall due to Bjerknes force as has
been carefully analysed by Doinikov & Bouakaz (2014). The velocity potential is
modified by an additional dipole term

ϕ =−

(
1
S1
+

1
S2

)
ṘR2
− b

(
h− z

S3
1
+

h+ z
S3

2

)
. (2.39)

Corresponding linearized non-dimensional potential velocity in the radial direction is
also modified as
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u∗ϕ =
ξm

r∗2


1(

1+
(

z∗ − h∗

r∗

)2
)3/2 +

1(
1+

(
z∗ + h∗

r∗

)2
)3/2



∣∣∣∣∣∣∣∣∣∣∣
z=0

+
bl

r∗4


3(h∗ − z∗)(

1+
(

z∗ − h∗

r∗

)2
)5/2 +

3(h∗ + z∗)(
1+

(
z∗ − h∗

r∗

)2
)5/2



∣∣∣∣∣∣∣∣∣∣∣
z=0

=
2ξm

r∗2
(

1+
(

h∗

r∗

)2
)3/2 +

6h∗bl

r∗4
(

1+
(

h∗

r∗

)2
)5/2 , (2.40)

where bl is given by (Doinikov & Bouakaz 2014)

bl
=

∣∣∣∣ ξm

4h∗2

(
α3
+ 3iα2

− 6α − 6i
−α3 − 3iα2 + 18α + 18i

)∣∣∣∣ ,
α = (1+ i)R0β.

 (2.41)

We note that the faster decay with r∗ characteristic of a dipole makes the translational
part much smaller at larger radial distance. Also at smaller r∗� 1, the translational
part is smaller than the radial part by a factor of 3/4h∗3. For separation distances of
the microbubble from the wall h > 2R0, this factor is quite small, and therefore the
effect of translation here has not been considered, except briefly. However, note that
it can easily be accounted for using the expression (2.41).

2.7. Effects of the shell on a contrast microbubble
Microbubbles (size ∼1–10 µm) used for contrast-enhanced ultrasound imaging
(Goldberg, Raichlen & Forsberg 2001; Paul et al. 2014) are coated by a monolayer of
lipids, proteins or other surface-active molecules to stabilize them against premature
dissolution due to gas diffusion (Katiyar, Sarkar & Jain 2009; Sarkar, Katiyar &
Jain 2009). There have been numerous models of contrast microbubble coating (de
Jong et al. 1992; Church 1995; Hoff, Sontum & Hovem 2000; Chatterjee & Sarkar
2003; Marmottant et al. 2005; Sarkar et al. 2005; Tsiglifis & Pelekasis 2008; Paul
et al. 2010). We have recently shown that most of these models can be expressed
as an interfacial rheological model with an effective surface tension γ (R) and an
effective dilatational viscosity κ s(R) (Katiyar & Sarkar 2011). Here we have used a
strain-softening model called the exponential elasticity model (Paul et al. 2010):

γ (R)= γ0 + β
sEs, Es

= Es
0 exp(−αsβs), βs

=

(
R
RE

)2

− 1, κ s constant,

(2.42a−c)

where Es is the shell dilatational elasticity, βs is the change in area fraction from the
equilibrium radius RE = R0[1+ (1−

√
1+ 4γ0αs/Es

0)/2αs
]
−1/2, and γ0, αs and Es

0 are
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Acoustic microstreaming near a plane wall due to pulsating bubble 793

material properties of the coating. We have demonstrated how these characteristic
properties for a microbubble contrast agent can be measured through acoustic
experiments (Paul et al. 2010, 2013; Kumar & Sarkar 2015; Xia, Porter & Sarkar
2015; Kumar & Sarkar 2016). For example, for contrast agent Sonazoid, they are
γ0 = 0.019 N m−1, Es

0 = 0.55 N m−1, αs
= 1.5 and κ s

= 1.2 × 10−8 N s m−1. As a
result of the coating stresses, equations (2.34) become

ω2
0

ω2
=

1
(1+ R0/2h)

(
3κEub +

2(
√

1+ 4γ0αs/Es
0/α

s)(1+ 2αs
−
√

1+ 4γ0αs/Es
0)

Wes
b

)
,

δt =
4ω

(1+ R0/2h)ω0

(
1

Reb
+

1
Res

b

)
,


(2.43)

where Wes
b = ρR3

0ω
2/Es

0, Res
b = ρR3

0ω/κ
s, γ0/Es

0 and αs are the non-dimensional
numbers related to the coating parameters. We have shown that different models of
coating often give rise to qualitatively similar behaviours (Kumar & Sarkar 2015; Xia
et al. 2015; Kumar & Sarkar 2016) even for nonlinear response. We expect that they
would vary very little in their predictions of linear dynamics.

2.8. Circulation of the ring vortex in microstreaming flow

Microstreaming gives rise to an axisymmetric vortex ring near the wall (see figure 5).
We compute the circulation of the vortex ring, a single quantitative scalar measure
of the vortex, in the r–z plane using the Stokes theorem. However, it requires us
to objectively define the spatial extent of the vortex. The problem of a quantitative
and objective identification of vortices has been a major issue in experimentally
measured velocity data in turbulent flows. In fact although vortices are ubiquitous,
there is no universally accepted definition of a ‘vortex’ (Chakraborty, Balachandar
& Adrian 2005). The problem can be appreciated by noting that simple shear has
vorticity, yet does not contain a vortex. A local method of vortex identification
obtains a point function that classifies the point to be outside or inside a vortex.
The criterion being completely defined by the local velocity gradient is Galilean
invariant. There have been many local methods proposed in the literature and their
relative merits, specifically their utility in identifying vortical structures in complex
turbulent flow measurements, have been investigated in detail (Chakraborty et al.
2005). Here, we apply the d2 method (discriminant of non-real eigenvalues of velocity
gradient tensor) (Vollmers 2001) principally for its ease of use in two-dimensional
data. It is a Galilean-invariant method that distinguishes vortical structures from
boundary layers and shear layers (Najjari & Plesniak 2016). A negative value of d2

corresponds to the non-real eigenvalue of velocity gradient and indicates a vortex
region:

d2 =

(
∂〈u(2)〉t
∂r

+
∂〈w(2)

〉t

∂z

)2

− 4
(
∂〈u(2)〉t
∂r

∂〈w(2)
〉t

∂z
−
∂〈u(2)〉t
∂z

∂〈w(2)
〉t

∂r

)
, (2.44)
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where

∂〈u(2)〉t
∂r

=
1
ω

(
1
2
∂2u2

ϕ

∂r2
(uα − uβ)−

(
∂u2

ϕ

r∂r
−

u2
ϕ

r2

)
uβ

)
,

∂〈u(2)〉t
∂z

=
1
ω

(
1
2
∂u2

ϕ

∂r
βe−βz(cos βz− 2 sin βz+ βz cos βz− 0.5e−βz)

−
u2
ϕ

r
(βe−βz(sin βz− βz cos βz))

)
,

∂〈w(2)
〉t

∂r
=−

1
2ω

(
−

1
r2

∂u2
ϕ

∂r
+

1
r
∂2u2

ϕ

∂r2

)

×

(
−

1
8β

e−2βz
−

1
4β

e−βz (6βz sin βz+ 8 sin βz+ 14 cos βz)−
7
4

z+
29
8β

)
−

1
2ω

(
∂3u2

ϕ

∂r3

)

×

(
−

1
8β

e−2βz
−

1
4β

e−βz (2βz sin βz+ 4 sin βz+ 6 cos βz)−
3
4

z+
13
8β

)
,

∂〈w(2)
〉t

∂z
=−

1
2ω

(
1
r
∂u2

ϕ

∂r

)

×

(
1
4

e−βz(e−βz
+ 6βz sin βz+ 16 sin βz+ 6 cos βz− 6βz cos βz)−

7
4

)
−

1
2ω

(
∂2u2

ϕ

∂r2

)

×

(
1
4

e−βz(e−βz
+ 2βz sin βz+ 8 sin βz+ 2 cos βz− 2βz cos βz)−

3
4

)
.


(2.45)

We compute the total circulation by detecting the vortex region using the d2 method,
and then numerically integrating:

Λ=
∑

i

Λi =
∑

i

Ωi1r1z=
∑

i

(
∂〈w(2)

〉t

∂r
−
∂〈u(2)〉t
∂z

)
1r1z, (2.46)

which can be non-dimensionalized by R2
0ω to obtain the non-dimensional circulation Λ∗.

3. Results and discussion
3.1. Microstreaming due to free bubble oscillation

Although the analysis delineated here is valid for different bubble radius and excitation
parameters, we are primarily interested in microbubble-based contrast-enhanced
ultrasound imaging and drug delivery applications with R0 of the order of micrometres
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FIGURE 2. (Colour online) The radial pulsation of the free microbubble when Reb = 48,
Eub = 0.11,Web = 20, h/R0 = 2.

and fex in the megahertz range. Specifically, we consider the case of R0 = 1.6 µm,
the average radius of the contrast agent Sonazoid (Sontum et al. 1999; Sontum
2008), at an excitation frequency of 3 MHz. The driving amplitude was chosen
to be small enough, Pex = 70 kPa (P∗ex = 0.7), to ensure linear oscillation, giving
rise to Reb = 48, Eub = 0.11 and Web = 20. Figure 2 shows the radial pulsation of
the microbubble with non-dimensional time located at h = 2R0 obtained solving the
full Rayleigh–Plesset equation (2.31) using a standard Matlab solver, ode15s. The
eventual periodic oscillation with a non-dimensional amplitude ε = 0, 11 seen here
is also predicted by the linearized form (2.35) demonstrating that the excitation is
small enough for linear dynamics, and the linear analysis is valid. Note that the
bubble streaming Reynolds number Rebs = ε

2(2Reb)
1/2
= 0.12. We also check the

approximation made in neglecting the z-variation of u∗ϕ (varying in a scale R0) inside
the boundary layer.

In figure 3, we plot u∗ϕ at z= 0 and at z= δ for three different separations h= 1.5R0,
h= 2R0 and h= 3R0. We note that the variation is small for all cases, being largest
for the smallest separation h = 1.5R0. Therefore the approximation adopted here –
u∗ϕ(z= 0) and ∂u∗ϕ(z= 0) in (2.36) and (2.37) – following Nyborg (1958) is justified.
The average streaming velocity (2.22) and (2.23) can be written in terms of the
irrotational component of the first-order oscillating velocity u∗ϕ . Figure 4 shows the
streamlines of u∗ϕ surrounding the microbubble at two different non-dimensional times
corresponding to microbubble expansion and compression.

We plot the streamlines of microstreaming velocities 〈u(2)〉t and 〈w(2)
〉t according

to equations (2.22) and (2.23) in figures 5(a) and 5(b) for two locations of the
microbubble at h= 2R0 and h= 3R0, respectively. This case is the same one discussed
before for Reb = 48, Eub = 0.11,Web = 20. They show the cross-sectional plot of the
axisymmetric ring vortex over the wall. Inside the vortex, the flow near the wall is
directed radially outward, while it is directed inward beyond the vortex length. The
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2 4
r/R0
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h = 3.0R0

h = 2.0R0
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h = 1.5R0, z = 0
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h = 2.0R0, z = ∂
h = 3.0R0, z = 0
h = 3.0R0, z = ∂

FIGURE 3. (Colour online) The non-dimensional irrotational velocity at z= 0 and z= δ
for h= 1.5R0, h= 2R0, h= 3R0 when Reb = 48, Eub = 0.11,Web = 20, P∗ex = 0.7.

-3 -2 -1 0

t* = 110
r/R0
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(a)

2

1

0
-3 -2 -1 0

t* = 110 + 2π
r/R0

1 2 3

3
(b)

2

1

0

FIGURE 4. (Colour online) The irrotational velocity around the free microbubble when
Reb = 48, Eub = 0.11,Web = 20, h/R0 = 2, P∗ex = 0.7: (a) expansion; (b) compression.

vortex ring extends up to r∗ = 1.41 and r∗ = 2.12 defining lvortex along the wall for
the cases h= 2R0 and h= 3R0 respectively. Length lvortex increases with h∗ = h/R0.

To understand the generation of the vortex we examine (2.2) showing ρ〈u(1) ·∇u(1)〉t
driving the Stokes equation for the streaming velocity. In particular, one sees that Fr in
(2.20) is primarily dominated by the first term proportional to u∗ϕ∂ru∗ϕ (the second term
proportional to βz is small and zero at the wall). We plot u∗ϕ and ∂ru∗ϕ in figures 5(c)
and 5(d) for the same cases as in figures 5(a) and 5(b). We see that the former
achieves a peak and the latter changes sign at r∗= 1.41 and r∗= 2.12, resulting in Fr
changing sign at those radial distances. This in turn changes the direction of 〈u(2)〉t
along the wall at these locations signalling the radial extent of the vortex lvortex. In
fact, one finds from (2.36)

∂u∗ϕ
∂r∗

∣∣∣∣
z∗=0

= 0→
lvortex

R0
=

h
√

2R0
. (3.1)
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Acoustic microstreaming near a plane wall due to pulsating bubble 797

Note that this expression is independent of all other parameters and primarily results
from the functional dependence in (2.36) arising due to the reflection from the wall.
It matches with the values found above: lvortex = 1.41R0 and 2.12R0 for h= 2R0 and
h= 3R0 respectively. In contrast to the vortex length, its vertical extent dvortex remains
unchanged with varying h, the microbubble separation from the wall (0.32R0 for both
h∗=h/R0=2 and h∗=3). It is of the order ∼δ, the boundary layer thickness. One can
compute it by considering the vertical component of streaming velocity close to the
axis of symmetry being zero 〈w(2)

〉t(r∗→ 0, dvortex/R0)= 0. Near the axis of symmetry
where r= 0, one can approximate

∂2u2
ϕ

∂r2
' Limr→0

1
r

(
∂2u2

ϕ

∂r2

∣∣∣∣∣
r

−
∂2u2

ϕ

∂r2

∣∣∣∣∣
0

)
= Limr→0

1
r
∂2u2

ϕ

∂r2

∣∣∣∣∣
r

. (3.2)

Therefore, close to the axis, one can write (2.23) as

〈w(2)
〉t '−

1
2ω

(
1
r
∂u2

ϕ

∂r

)

×

(
−

1
4β

e−2βz
−

1
4β

e−βz(8βz sin βz+ 12 sin βz+ 20 cos βz)−
10
4

z+
42
8β

)
. (3.3)

One then obtains

〈w(2)
〉t = 0→

dvortex

R0
=

1.6
R0β
= 1.6

δ

R0
=

1.6
R0

√
2ν
ω
=

1.6
√

2
√

Reb
. (3.4)

Here, it results in dvortex = 0.32R0 as seen in figure 5(a,b). The width therefore is
typical of boundary layer scaling and depends only on the excitation frequency and
kinematic viscosity of the fluid.

Figures 5(e) and 5( f ) show the shear stress on the wall induced by the microstreaming
flow shown in figures 5(a) and 5(b), respectively. It changes sign at r = lvortex where
the radial first-order irrotational velocity achieves its maximum. The maximum
shear stress on the wall, as expected, decreases when the microbubble is excited
further away from the wall. The value of the maximum shear stress appears at
a distance r∗max stress. One can take the expression (2.38) and find its maximum at
r∗max stress = 0.2865h∗ as was also found by Doinikov & Bouakaz (2010a,b). For
the conditions investigated here (R0 = 1.6 µm, fex = 3 MHz, Pex = 70 kPa), the
maximum shear stress is computed to be 12.8 and 2.2 Pa (note that P0 = 105 Pa)
from figure 5(e, f ). We noted before that an average streaming shear stress expression
τL = µuL/δ has been widely used in the literature to estimate the maximum shear
stress on the wall induced by microstreaming. In figure 5(e, f ) the non-dimensional
average streaming shear stress τ ∗L (non-dimensionalized with respect to the ambient
pressure) on the wall has been calculated using the limiting streaming velocity uL
(z→∞ in (2.38))

uL =−
1
ω

(
3
8
∂u2

ϕ

∂r
+

u2
ϕ

2r

)
. (3.5)

Note also that the direction of the radial limiting velocity is opposite to that of the
radial microstreaming velocity close to the wall as can also be observed from the
microstreaming streamlines in the regions close to and far from the wall. Therefore,
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FIGURE 5. (Colour online) Microstreaming streamlines near the plane rigid wall when
Reb=48,Eub=0.11,Web=20, P∗ex=0.7 and the microbubble is located at (a) h/R0=2 and
(b) h/R0 = 3. (c,d) Corresponding non-dimensional amplitude of radial potential velocity
(black solid line) on the rigid wall and its derivative (red dashed line) with respect to
radial distance along the wall. (e, f ) Corresponding non-dimensional shear stress on the
wall using limiting streaming velocity and microstreaming velocity.

opposite sign has been chosen for computing τ ∗L and compared to the wall stress. In
any event, τ ∗L which is often used in the literature is computed to be much higher
(almost three times in figure 5e, f ) than the wall shear stress.

Observing the motion of the tracer particles to delineate microstreaming, one
obtains the Lagrangian streamlines. Figure 6 compares Lagrangian with Eulerian
streamline patterns demonstrating that for the same flow field they are significantly
different. Specifically, the vertical width of the vortical structure is narrower in the
Lagrangian field causing the Lagrangian velocity to be of opposite sign at the same
position. In figure 7, we plot the radial and vertical velocity components in both
Eulerian and Lagrangian descriptions at three different vertical locations z = 0.03R0,
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FIGURE 6. Comparing microstreaming streamlines near the plane rigid wall due to a free
microbubble using Lagrangian and Eulerian streaming when Reb=48,Eub=0.11,Web=20,
h/R0 = 2, P∗ex = 0.7.
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FIGURE 7. (Colour online) Comparing (a) radial component and (b) vertical component
of Lagrangian and Eulerian microstreaming velocity at three different vertical distances
z= 0.03R0, z= 0.16R0 and z= 0.32R0 from the wall when Reb= 48,Eub= 0.11,Web= 20,
h/R0 = 2, P∗ex = 0.7.

z = 0.16R0 and z = 0.32R0 from the wall. We find that the velocities in the two
different descriptions are similar and in the same direction closest to the wall, but at
z= 0.125R0, while Eulerian radial velocity is positive, i.e. outward close to the axis
in the bottom region of the vortex, its Lagrangian counterpart is mostly negative in
the top part of the Lagrangian vortex (figure 7a). The vertical velocity in figure 7(b)
shows similar differences in the two descriptions. Note that the highest magnitude of
the radial Eulerian velocity at z= 0.32R0 (top of the vortex) is ∼3 mm s−1.

We have examined the effects of bubble translational motion on the theoretical
expression of microstreaming in § 2.6 noting that the effects are small. In figure 8,
we validate this conclusion by noting that accounting for translation leads to very
little change in the streamline pattern.

Figure 9 plots the vorticity. The region of high negative vorticity (on the right-hand
side of the figure; the left-hand side is antisymmetric) in the area adjoining the wall is
generated by the strong shear due to the no-slip condition, coinciding with the flatter
streamlines in the lower part of the vortex (figure 8). The vorticity increases with
vertical distance from the wall changing sign to become positive and achieving the
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FIGURE 8. Streamlines due to microstreaming near the plane rigid wall due to a free
microbubble with and without accounting for translational motion when Reb= 48,Eub= 0.11,
Web = 20, h/R0 = 2, P∗ex = 0.7.

-1.5 -1.0 -0.5 0
r*

z*

0.5 1.0

d2 = 0

1.5

0.3

0.2

0.1

0

90
(÷ 10-5)

72
54
36
18
0
-18
-36
-54
-72
-90

Vo
rti

ci
ty

*

FIGURE 9. (Colour online) Vorticity contours due to the ring vortex induced by free
microbubble when Reb = 48, Eub = 0.11,Web = 20 at h/R0 = 2, P∗ex = 0.7.

highest positive value near the edge of the vortex flow due to the strong shear layer
there. The vorticity field, although generated by the vortex flow, does not provide
an easy identification of the vortex, embodying the problem of vortex identification
described in § 2.8. We identify the vortex region using the d2 method – inside the
region enclosed by the d2 = 0 curve in figure 9, where d2 according to (2.44) is
negative – and compute circulation of the vortex. We note that the region identified
by the d2 method is smaller than what can be estimated from the streamline plot in
figure 8. The closely spaced straight streamlines near the boundaries of the vortex in
figure 8 were identified by the method as due to the boundary shear rather than due
to the vortex. As described before, such difficulties of vortex identification methods
have been discussed before in the literature (Chakraborty et al. 2005). However, the
vortex identified allows us to compute the circulation. Figure 10(a) shows the non-
dimensional circulation Λ∗ of the axisymmetric vortex ring (non-dimensionalized by
R2

0ω) as a function of separation distance h of the microbubble from the wall. We
also plot the maximum shear stress τ ∗max in the same figure. They both decrease with
increasing separation of the microbubble from the wall with a power-law variation
with h/R0.

We investigate these variations in detail. In order to accommodate widely different
magnitudes of these quantities in the same figure, we plot in figure 10(b) these
quantities – circulation, maximum shear stress – by normalizing them by their
highest values occurring at h/R0 = 1, i.e. Λ∗(h/R0 = 1) and τ ∗max(h/R0 = 1). We also
plot maximum vorticity Ωmax normalizing it by Ωmax(h/R0 = 1). We note similar
scaling in shear stress and vorticity τ ∗max, Ωmax ∼ (h/R0)

−4.3. This can be explained by
noting that the term ∂〈u2〉/∂y responsible for τ is the dominant part in Ω . We find
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FIGURE 10. (Colour online) (a) Non-dimensional circulation of the ring vortex and
non-dimensional maximum shear stress as a function of the separation distance of the
microbubble from the wall when Reb= 48,Eub= 0.11,Web= 20, P∗ex= 0.7. (b) Circulation,
maximum vorticity and maximum wall shear stress normalized by their values at h/R0= 1
as a function of h/R0 for the same condition as in (a). (c) The same quantities as plotted
in (b) for Reb = 170, Eub = 0.03,Web = 133. (d) The same quantities as plotted in (b) for
Reb = 471, Web = 617, Eub = 0.011.

Λ∗ ∼ (h/R0)
−3.4. Approximate relation Λ∗ ∼ Ωmax(h/R0) can be explained by noting

the Stokes theorem Λ =
∫
Ω dr dz ∼ Ωmaxlvortexdvortex and the relations found before

(3.1) and (3.4). These relations are also seen for other microbubble radii R0 = 3 µm
and R0 = 5 µm (correspondingly different Reb, Eub and Web) in figures 10(c) and
10(d). The exact power-law indices differ but τ ∗max and Ωmax have the same index and
Λ∗ ∼Ωmax(h/R0) approximately holds in all cases.

3.2. Effects of microbubble coating on microstreaming
Here we consider the effects of the stabilizing coating on a microbubble. As noted
before, we consider the contrast agent Sonazoid and use its property values determined
using the exponential elasticity model (Paul et al. 2010): γ0 = 0.019 N m−1,
Es

0 = 0.55 N m−1, αs
= 1.5 and κ s

= 1.2 × 10−8 N s m−1. Note that we found
qualitatively similar results with other models (not shown here) such as that
of Marmottant et al. (2005). We choose bubble radius of 1.6 µm, average size
of Sonazoid h = 2R0 and identical excitation parameters (70 kPa, 3 MHz) as
before giving rise to Reb = 48, Eub = 0.11, Web = 20, Res

b = 6.4, Wes
b = 2.6. Two
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FIGURE 11. (Colour online) (a) Streaming velocity field near the plane rigid wall due to
coated microbubble when Reb= 48, Eub= 0.11, Web= 20, Res

b= 6.4, Wes
b= 2.6, h/R0= 2,

γ0/Es
0= 0.0345 and αs

= 1.5. (b) Wall shear stress for the same conditions as well as for
two other values of h/R0.

material non-dimensional parameters are γ0/Es
0 = 0.0345 and αs

= 1.5. Resulting
non-dimensional periodic oscillation amplitude is ε = 0.08, smaller than the free
bubble. The bubble streaming Reynolds number Rebs = 0.06 is also correspondingly
smaller. Figure 11(a) shows the microstreaming streamlines due to a pulsating
Sonazoid microbubble for this condition. The streamline pattern is similar to that due
to a free microbubble without any coating shown in figure 4(a). The dimensions of
the vortex lvortex = 1.41R0 and dvortex = 0.32R0 are the same as those in free vortex
(as determined, for example, by equation (3.1)). In figure 11(b), we show the wall
shear stress for the same condition. Shear stress profiles are similar to those for a
free bubble, reaching zero value at r∗ = lvortex/R0. The value of the maximum shear
stress for this coated bubble is 6 Pa, smaller than the case of a free bubble for the
same conditions (size, excitation parameters and separation) with identical position
and the shear stress expectedly decreases and with increasing bubble separation; at
the same time, lvortex increases as per equation (3.1).

To examine the effects of the shell parameters, in figures 12(a) and 12(b) we plot
the non-dimensional circulation of the vortex Λ∗ and non-dimensional maximum shear
stress on the wall with respect to shell viscosity ratio κ s/κ s

(sonazoid) and shell elasticity
ratio Es

0/E
s
0(sonazoid), respectively, with other parameters held the same as before. The

values for Sonazoid coating agent are Es
0(sonazoid) = 0.55 N m−1 and κ s

sonazoid = 1.2 ×
10−8 N s m−1. Here Λ∗ and τ ∗max show identical variations with coating parameters.
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FIGURE 12. (Colour online) Non-dimensional circulation of half the ring vortex and
maximum wall shear stress due to coated microbubble (a) with respect to dilatation
viscosity and (b) with respect to coating elasticity when Reb = 48, Eub = 0.11,Web = 20,
h/R0 = 2 and αs

= 1.5.

Coating parameters affect the bubble pulsation amplitude and that in turn affects Λ∗

and τ ∗max. The variations in Λ∗ and τ ∗max are then identical for the same reasons as
for the free bubble. Figure 12(a) shows that circulation and maximum shear stress
decrease with increasing dilatational viscosity, as can be expected from the fact that at
higher dilatational viscosities, the coated microbubble has smaller pulsation amplitudes
and thereby lower streaming velocity and lower shear stress as well as circulation.
The change of circulation and shear stress with shell elasticity (figure 12b) shows
a maximum corresponding to Es

0 = 0.27 N m−1. The maximum signals a resonance
of the coated microbubble at the excitation frequency; changing the shell elasticity
changes the spring constant and correspondingly the resonance frequency of the coated
bubble according to equation (2.43), i.e. the oscillation is maximum at this value
of Es

0.

4. Conclusion

Acoustic microstreaming due to an oscillating bubble near a plane wall has been
analytically investigated in detail using a perturbative theory. Both free and coated
microbubbles have been considered. The Eulerian and Lagrangian velocity fields and
wall shear stresses have been computed. The closed streamlines of the axisymmetric
ring vortex have been plotted. The vortex geometry has been identified using a d2
method and its circulation computed. Under the approximations used, the vortex
radial length along the wall is found to depend only on the separation of the bubble
from the wall with the dependence being linear. The maximum shear stress has been
shown to have the same variation with bubble separation as the circulation. For coated
microbubbles, a strain-softening viscoelastic interfacial model for the coating is used.
The analytical results for the coated bubble are similar to those for the free bubble.
The wall shear stress decreases with increasing shell dilatational viscosity and shows
a non-monotonic behaviour with increasing shell dilatational elasticity with a peak at
the resonance.
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