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Abstract

The kinematics of a potential vortex offers an interesting flow history for a rheologically complex material, and
earlier work on that subject led us to consider the behavior of a Newtonian drop in three related time dependent
flow fields [K. Sarkar, W.R. Schowalter, Deformation of a two-dimensional drop at non-zero Reynolds number in
time-periodic extensional flows: numerical simulation, J. Fluid Mech., 2000, submitted for publication; K. Sarkar,
W.R. Schowalter, Deformation of a two-dimensional viscous drop in time-periodic extensional flows: analytical
treatment, J. Fluid Mech., 2000, submitted for publication]. In the work reported here the drop, characterized by an
upper-convected Maxwell model (UCM), is suspended in an incompressible Newtonian fluid. Again, three related
flows are considered. The first is that of a potential vortex, modeled by an extensional flow field near the drop with
rotating axes of stretching. The second is a generalization of the first and is calledrotating extensional(RE) flow,
in which the frequency of revolution of the flow is varied independently of the shear rate. Finally, we consider
oscillating extensional(OE) flow.

Calculations were performed at small but non-zero Reynolds numbers using an ADI front-tracking/finite differ-
ence method. We have developed an analytic elastic-viscous stress splitting scheme obtained by an integration by
parts of the constitutive equation. The scheme explicitly separates the diffusive part of the momentum equation for
a wide range of differential constitutive relations. An ADI implementation is executed for the diffusive part. We
investigate the effects of periodicity, Reynolds number and relaxation time on the drop dynamics. For a vortex and
an RE flow, the long-time deformation reaches a steady value, and the drop attains a revolving, steady elliptic shape.
The long-time values of deformation show complex non-monotonic behavior with variation in Weissenberg number,
an effect of the decreased damping and increased elasticity, as well as the presence of a shear wave triggered by the
UCM constitutive relation. The first two effects are modeled successfully by a simple ODE presented in Appendix
A. The wave effects are briefly discussed in Appendix B. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Drop deformation is relevant to a number of industrial, biological and environmental processes. These
include formation of emulsions, dynamics of multi-phase flow heat transfer, mixing, and structure for-
mation in polymeric blends. The drops are deformed, torn apart, and coalesced together giving rise to
a time dependent size and shape distribution with complex rheological response for the overall flow.
Computational simulation of such a flow is a challenging task. It can be better appreciated by noting that
a consistent mathematical description, even of a single drop, is a difficult non-linear moving-boundary
problem with boundary conditions prescribed on a surface that is determined only as a part of the solution.

Taylor initiated a systematic study of the drop deformation process with experiments and analysis with
the four-roll mill apparatus [3–5]. Since then sustained research effort has resulted in significant gain in
knowledge about the phenomenon and its effect on emulsion rheology (see [6] for a review). A variety
of linear flows combining stretching and rotation has been studied for the effect on deformation. This
has led to classifications such as strong and weak flows depending on the deformation they cause [7,8].
However, the classification is based on the gradient of the flow, and is valid only for motions with constant
stretch history (MCSH). Astarita [9] provided a criterion for general unsteady flows. These criteria fail to
take account of the effects of the drop on the flow. Incorporation of dynamics was attempted by Olbricht
et al. [10], who studied evolution equations for representative micro-variables of deformation. Szeri et al.
[11] introduced time varying flow, and investigated the resultant non-autonomous dynamical system. The
criteria emerging from their work went beyond a linear stability analysis for the initiation of stretching, and
encompassed information about global dynamics. Most of these theoretical explorations were supported
by experiments performed with an improved computer-controlled four-roll mill developed by Bentley
and Leal [12,13].

Deiber and Schowalter [14] have suggested the potential vortex as a useful base flow to study microrhe-
ological behavior. In this flow a drop or a blob of polymer experiences a time-dependent non-viscometric
stretching that provides an interesting point of departure from the four-roll mill or the Maxwell orthogonal
rheometer. A potential vortex can provide pertinent information not accessible through a four-roll mill but
relevant to turbulent flow of an emulsion or a polymeric solution. Furthermore, approximate experimen-
tal realization of a potential vortex is possible [15,16]. We have initiated a numerical analysis of a drop
deforming in such a potential vortex and other related flows. Analysis for a Newtonian flow has recently
been completed [1,2] for two-dimensional drops that exhibited interesting resonance phenomena. Here
we continue our effort with a non-Newtonian drop.

Most studies to date of drop deformation have been restricted to linearized Newtonian Stokes flow due
to the small Reynolds number (small size) of the drops. For the viscous case semi-analytic methods at
the limit of small deformation [6,17], or boundary-element methods for large deformation [18] have been
applied to solve the problem. Following our Newtonian study [1], we adopt here a finite Reynolds number
computational strategy using front-tracking/finite difference method developed by Tryggvason et al. (see,
e.g. [19–21]). The front-tracking method offers generality over boundary elements and computational
advantages over finite elements/differences with a body fitted mesh. A drop suspended in a vortex is a
three-dimensional problem. As an initial effort we have restricted ourselves to a two-dimensional case,
thereby making the drop an infinite cylinder. Due to the satisfying analytical support found for our earlier
two-dimensional calculations [1,2], we believe that the rich physics shown here for two dimensions is
qualitatively correct also for three dimensions. A time splitting ADI scheme has been used to achieve low
but non-zero Reynolds number (the lowest Reynolds number treated here is 0.1).
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The literature of non-Newtonian flow computation is much more recent in comparison to its Newto-
nian counterpart. Early attempts soon uncovered notorious convergence difficulties relating to geometric
and constitutive singularities, as well as the so-called high Weissenberg number problem. The source
of the problem has been recognized as partially due to change of type of equation from elliptic to
hyperbolic, driven by numerical error [22,23]. Since the late eighties extensive numerical experimenta-
tion with different algorithms and theoretical analysis has led to the development of a number of finite
element schemes such as elastic-viscous stress splitting (EVSS), explicitly elliptic momentum equation
(EEME), stream-wise upwinding Petrov–Galerkin (SUPG), streamline finite element (SFEM), and dis-
crete Galerkin (DG) that are able to handle the numerical difficulties [24–28]. Attempts have been made
to incorporate the advantages of different methods through consolidation, e.g. DAVSS-G/DG by Sun
et al. [29].

Recently a number of researchers [30–34] have successfully applied staggered grid finite volume
methods such as the SIMPLE family [35] to viscoelastic problems. Staggered grid provides a desirable
coupling between velocity and the stress variables. Oliveira et al. [36] have successfully applied a col-
located (non-staggered) finite volume method, using special treatment to preserve the stress–velocity
coupling.

Most of the extant numerical efforts have been aimed at simple, steady, two-dimensional/axisymmetric
benchmark problems such as flow through a sudden expansion or around a sphere in a pipe. The work
of Mompean and Deville [37] is a notable exception, simulating unsteady, three-dimensional simulation
of an Oldroyd-B fluid through a planar contraction. Non-Newtonian multi-phase computation for drop
deformation has been performed by Bonsfield et al. [38], Ramaswamy and Leal [39,40] and Toose et al.
[41] in steady extension flows. Bousfield et al. performed an axisymmetric Galerkin/finite element analysis
of a bubble suspended in on Oldroyd B fluid. Ramaswami & Leal applied a body-fitted orthogonoll mesh
to a drop of Ckilcot-Rallison fluid. Toose et al. used a boundary-intergral method with discritized volume
integration for the extra stress contribution to a two-dimensional Oldroyd-B drop. steady axisymmetric
extension of a drop of Chilcot–Rallison fluid. The latter used a boundary-integral method with discretized
volume integration for the extra stress contribution to a two-dimensional Oldroyd-B drop deforming in a
steady extensional flow.

It has been recognized that simple viscoelastic models like the single mode UCM is not adequate for
realistic rheological response. However, the UCM with its severe numerical difficulties is preferred for
developing robust numerical schemes that are then expected to perform well with other models. We too
have chosen the UCM with a single relaxation time as a model equation for our computation.

As mentioned above, one of the primary aims of the work is to investigate vortex flow kinematics
in drop deformation. However, the linearized vortex model is a special case of more general rotating
extensional (RE) flows, where the axes of stretching are rotating with time. These flows along with
oscillating extensional (OE) flows have been described in detail in [1,2]. The importance of extensional
flows in drop deformation that are investigated here have been noted by Taylor — a veryviscous drop
that would reach an equilibrium shape in a steady shear with an arbitrarily large shear rate would extend
continuously in a two-dimensional extensional flow, once the rate exceeds a critical value.

Sections 2–4 describe the mathematical formulation of the problem and its numerical implementation.
The results are presented for three different Reynolds numbers in Section 5. In Section 6 we summarize
our findings. Appendices A and B describe, respectively, a simple one-dimensional model for drop defor-
mation and the effect of shear wave propagation. The latter is essential for understanding the numerical
results.
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Although the physical problem and the results are distinct from our earlier work, the computational
methodology is similar to that employed in [1]. In order to provide a self-contained description of the
present work, Sections 2–4 draw heavily on our earlier publication. The reader familiar with that paper
may wish to proceed directly to Section 4.2.1.

2. Vortex flow and other time-dependent flows

We describe here the kinematics of potential vortex flow with respect to individual fluid elements or
embedded drops or polymer blobs. As a fluid element in a potential vortex revolves, there is no rotation
about the origin of the vortex and the principal axes of stretching rotate about the center of the element, as
shown in Fig. 1. It is instructive to compare this drop behavior with that in other well-known time-periodic
flows, such as oscillatory shear flow and oscillatory extensional flow (with an invariant axis of extension).
The behavior of a drop in each of these flows is compared in Fig. 2. In potential vortex flow, the drop
does not rotate, due to absence of vorticity, as it follows a periodic path around the vortex. However, the
flow is distinctly different from oscillatory extensional flow, where axes of extension and contraction are
always along lines 1–3 and 2–4, alternatively. In the case of the vortex, the axes rotate, and hence the
maximum stretching takes place at time-varying locations along the drop interface.

In our analysis a linearization approximation is used. Hence, a drop in a vortex is, at any instant,
subjected to a pure extensional flow, but the principal axes of extension rotate (Fig. 1). In our numerical
simulation the vortex field is represented by such a linear rotating extensional flow, and there is a definite
relationship between the shear rate of the flow and the frequency. However, this linear approximation
to the vortex field also permits a more general flow field — namely a rotating extensional flow with
independently varying shear rate and frequency. We have studied drop deformation in this flow as well
as in an oscillating extensional flow (Fig. 2b).

Fig. 1. Velocity gradient in a potential vortex (from [1]).
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Fig. 2. Drop in different time-periodic linear flows: (a) oscillatory shear flow, (b) oscillatory extensional (OE) flow, and (c)
vortex/generalized rotating extensional (RE) flow (from [1]).

3. Mathematical formulation

3.1. Governing equations

The velocity fielduuu and the pressurep satisfy the equation of momentum conservation

∂(ρuuu)

∂t
+ ∇ · (ρuuuuuu) = −∇p +

∫
∂B

dxxxBκnnnσδ(xxx − xxxB) + ∇ · τ, (3.1)

in the entire domainΩ, consisting of the continuous fluid domainΩc and the suspended dropΩd with
appropriate boundary conditions at the outer boundary∂Ω (Fig. 3). Hereσ is the interfacial tension,
∂B is the surface of the drop consisting of pointsxxxB , κ the local curvature,nnn the outward normal to the
surface, andδ(xxx − xxxB) is the (two-dimensional for the present 2D problem) Dirac delta function. The
deviatoric stress tensorτ for an incompressible Newtonian fluid inΩc is given by

τ = 2µε = µ[∇uuu + (∇uuu)T], (3.2)

with µ being the viscosity,ε the strain-rate tensor, and the superscript T representing the transpose of the
velocity gradient∇uuu. In the drop phaseΩd the stress is given by the upper convected Maxwell (UCM)
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Fig. 3. Flow geometry.

model

tM τ̂ + τ = 2µ∗ε, (3.3)

wheretM is the relaxation time, and̂τ indicates the upper convected (Oldroyd-B) derivative of the stress

τ̂ = ∂τ

∂t
+ uuu · ∇τ + ∇uuu · τ + τ · ∇Tuuu. (3.4)

The contribution due to the interfacial tension producing the jump in the normal stress across the interface
is represented as a (singular) distributed body force. The flow field is incompressible,

∇ · uuu = 0. (3.5)

The velocity field satisfies a single equation in both phases with a spatially-varying densityρ(xxx) that
satisfies

Dρ

Dt
≡ ∂ρ

∂t
+ uuu · ∇ρ = 0. (3.6)

Other transport properties such as viscosityµ(xxx) can be similarly handled. Moreover, by applying the
momentum equation (3.1) in a pill-box of vanishing thickness straddling the front, one can recover
traditional velocity and shear stress continuity across the front, and the jump in the normal stress due to
interfacial tension ([42], p. 36).

3.2. Imposed flow fields

Assume that a two-dimensional drop with an initial circular cross section and radiusa, is situated at a
distanceR (R � a) from the vortex center as shown in Fig. 1. A linearized approximation of the velocity
field induced near the drop is

uuuV
0 (xxx) = EEE[xxxc(t)] · xxx = EEE[R cosθ(t), R sinθ(t)] · xxx = γ̇

(
sin 2θ − cos 2θ

− cos 2θ − sin 2θ

) (
x

y

)
, (3.7)

whereEEE[xxxc(t)] is the velocity gradient tensor evaluated at the center of the undeformed dropxxxc(t) =
{R cosθ(t), R sinθ(t)}, γ̇ = Γ/(2πR2), Γ being the circulation of the vortex.θ(t)=2πt/T =ωt/2,
denotes the angular position of the centerxxxc, as it revolves around the vortex with circular speedvR =
Γ/(2πR). The time period of revolution of the drop centerxxxc is given byT = 2πR/vR = 4π2R2/Γ ,
andω = 4π/T = 2γ̇ is the corresponding circular frequency.
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A generalization to a rotating extensional flowuuuRE
0 is given by the same Eq. (3.7) but with independently

varyingω andγ̇

uuuRE
0 (xxx) = γ̇

(
sinωt − cosωt

− cosωt − sinωt

) (
x

y

)
. (3.8)

OE flow (Fig. 2b) is defined by

uuuOE
0 = −γ̇ cosωt

(
0 1
1 0

) (
x

y

)
. (3.9)

Forω = 0, both RE and OE flows reduce to steady planar extensional flows.

3.3. Boundary conditions

The interface∂B is determined by the kinematic condition

dxxxB

dt
= uuu(xxxB). (3.10)

The delta functionδ(xxx − xxxB) can be used to relate the velocity at a point on the interfaceuuu(xxxB) to the
field velocity.

uuu(xxxB) =
∫

Ω

dxxxδ(xxx − xxxB)uuu(xxx). (3.11)

The velocity field (3.7) or (3.8) provides the external boundary condition at∂Ω

uuu(xxx ∈ ∂Ω) = uuu0(xxx). (3.12)

As noted before, continuity of stress and velocity are automatically satisfied by the governing equation
with spatially varying viscosities and the distributed forces (due to interfacial tension) in the field equation.

3.4. Front-tracking preliminaries

Flow with a drop is an example of a multiphase flow in which a suspended phase with properties
such asµ∗ andρ∗ for viscosity and density are different from those (µ andρ) in the continuous phase.
Furthermore, the two phases are described by different constitutive relations, Newtonian outside and
UCM inside the drop. The solution of such problems conventionally involves solving a governing set
of equations for each phase, with continuity conditions at the interface. The present method reduces the
multiphase to a single phase with spatially varying properties, and thereby eliminates explicit matching
at the interface. For this purpose, the material properties are written as

ρ(xxx) = ρ + (ρ∗ − ρ)I (xxx), (3.13)

µ(xxx) = µ + (µ∗ − µ)I (xxx), (3.14)

and

tM(xxx) = tMI (xxx), (3.15)
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whereI (xxx) is the indicator function

I (xxx) =
{

1, xxx ∈ Ωd,

0, xxx ∈ Ωc.
(3.16)

Numerical implementation of Eqs. (3.13)–(3.15) requires smooth representation of the discontinuous
indicator function. Applying the gradient operator to Eq. (3.16) we obtain

GGG(xxx) ≡ ∇I (xxx) = nnnδ1(nnn · (xxx − xxxB)), (3.17)

where δ1 is a one-dimensional delta function. (In a two-dimensional Cartesian coordinate system
δ(xxx − xxxB) = δ1(x − xB)δ1(y − yB).) Using the property of the delta function, we obtain

GGG(xxx) =
∫

∂B

dxxxBGGG(xxxB)δ1(xxx − xxxB)T. (3.18)

Thus,GGG(xxx) assumes non-zero values only on the front∂B. The superscript T represents the direction
tangential to the interface. Substituting the definition ofGGG(xxxB) from Eq. (3.17), and taking the divergence,
we obtain from Eq. (3.18) an equation forI (xxx):

∇2I (xxx) = ∇ · GGG(xxx) =
∫

∂B

dxxxB∇ · nnnδ(xxx − xxxB), (3.19)

with the boundary conditionI (xxx) = 0 for I (xxx ∈ ∂Ω), because the interface∂B, in the present case, is
situated far from the domain boundary∂Ω and does not straddle it. Note that we have used the separability
property of the delta function,

δ(xxx − xxxB) = δ1(nnn · (xxx − xxxB))δ1(xxx − xxxB)T. (3.20)

Eq. (3.19) is solved numerically forI (xxx) with a smooth surrogate of the delta function (see Section 4
below). Then Eqs. (3.13)–(3.15) readily furnish the desired ‘smooth’ fields for the respective properties.

We note that in the front-tracking implementation of Newtonian flows [20,21] with bubbles or free
surfaces the gaseous phase could not be ignored, as in other numerical methods. Here the gaseous phase
is modeled with small but non-zero values for density and viscosity. Such a treatment arrives at the same
set of equations everywhere in the whole domain. A similar approach could have been followed for the
difference in constitutive relation between phases, by assuming a Maxwell model also for the continuous
phase with a small but finitetM. However, we have implemented the exact condition for a Newtonian
fluid, namelytM ≡ 0 in Eqs. (3.2) and (3.15). This requires special treatment for the stress term in the
front tracking scheme, as the Maxwell model (3.3) changes character attM = 0 (see Section 4.2.1).

4. Numerical implementation

For a finite difference implementation the physical domain is approximated by a large box (of size
Lx = Ly = 10.0 in the unit of the drop radius) which is discretized by a regular square grid. The surface
of the immersed drop of radiusa (a/Lx,y � 1) is described by line elements. The elements are created
by putting points on the circle. The movement of the element vertices describes the evolving shape of
the drop. An adaptive regridding scheme prevents the elements from being excessively distorted. The
scheme creates/destroys elements by the insertion/removal of points on the existing front.
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4.1. Front tracking

A smooth representation of theδ-function, needed for the numerical implementation of Eqs. (3.1),
(3.11) and (3.19). We use the procedure of Peskin [43]

D(xxx − xxxB) = D1(x − xB)D1(y − yB), (4.1)

where

D(x − xB) = 1

41x

(
1 + cos

π

21x
(x − xB)

)
for |x − xB | ≤ 21x. (4.2)

The representation is explicitly separable in a Cartesian coordinate system and has the desirable unit mea-
sure property (i.e. upon integration over a domain containingxxxB , it results in unity). The approximation
of the delta function is coupled with the discretization of the computational domain; as the discretiza-
tion length1x approaches zero, the approximant approaches infinity, as required of a family of regular
functions approaching a delta function ([44], p. 110).

Substitution of the above representation of the smoothed delta function and discretization yields the
generic integrals:∫

Ω

dxxxf (xxx)δ(xxx − xxxB) '
∑

i

1x 1y f (xxxi)D(xxxi − xxxB), (4.3)

wherei sums over all grid points in the domain, and∫
∂B

dxxxBf (xxx)δ(xxx − xxxB) '
∑

j

1ljf (xxxj )D(xxxj − xxxB). (4.4)

The indexj sums over all front elements, and1lj represents the length of thej th element on the front.
Expressions similar to Eq. (4.3) are used for Eq. (3.11), and those similar to Eq. (4.4) are used for the
interfacial tension term in Eq. (3.1), and in the right-hand side of Eq. (3.19). These representations allow
a back-and-forth coupling between the discretized front and the domain variables around it. Thus, we
have replaced the interface separating phases by a region with sharp variation in properties. The region
has a finite thickness of approximately 41x (Fig. 4).

4.2. Finite difference

We have arrived at a system of partial differential equations with smooth spatially varying coefficients.
The front has been decoupled from the underlying flow equation, and has been retained only as a means
for computing the properties at successive time steps. One may choose from many methods for solving
the system of equations in the computational domain. We use a MAC type operator splitting/projection
finite difference method. The MAC method solves the system (3.1) and (3.5) in following two explicit
steps. The predictor consists of finding an intermediate velocityuuu∗ by

ρn+1uuu∗ − (ρuuu)n

1t
= −∇ · (ρuuuuuu)n + Fn + ∇ · τn. (4.5)

whereFn is the body force, which includes in the present case the contribution due to the interfacial
tension. The densityρn+1(xxx) is evaluated by Eq. (3.13) from the new front position attained by moving
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Fig. 4. Front-tracking preliminary.

it explicitly with the velocityuuun. The spatial derivatives are approximated by central differences in their
conservative form.

The corrector step gives the final velocity at the next time stepuuun+1,

uuun+1 − uuu∗

1t
= − 1

ρn+1
∇pn+1. (4.6)

Taking the divergence of Eq. (4.6), and requiring thatuuun+1 satisfies continuity, we obtain the following
Poisson’s equation for the pressure

∇ ·
(

1

ρn+1
∇pn+1

)
= 1

1t
∇ · uuu∗. (4.7)

Details of the method are available in Peyrot and Taylor ([45], p. 160). We use a staggered grid. Boundary
values for the nodes just outside the computational domain are obtained by second-order interpolation. A
zero Neumann condition for pressure, as is shown to be valid for this explicit method [46], is imposed at
the boundary. Note that the final velocity fielduuun+1 is solenoidal, but the intermediate velocityuuu∗ is not.

4.2.1. Constitutive equation
In a naive attempt to integrate the constitutive equations (3.3) and (3.4) following the procedure used

for the momentum equation, we obtain

τn+1 − τn

1t
= 1

tM
{−τ + 2µε − tM(uuu · ∇τ + ∇uuu · τ + τ · ∇Tuuu)}n. (4.8)

Note that the present scheme diverges attM = 0 in the Newtonian phase. The Maxwell equations (3.3)
and (3.4) is singular in the limit oftM = 0, as the highest time derivative drops out of the equation. On the
other hand, front-tracking implementation demands that we solve the same equation in the whole domain
with the relaxation timetM varying smoothly from its non-zero value inside the drop to zero outside. To
arrive at a consistent scheme we write Eq. (3.3) in the following form:

tM
∂τ

∂t
+ τ = K(t), (4.9)
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where

K(t) = 2µε − tM(uuu · ∇τ + ∇uuu · τ + τ · ∇Tuuu). (4.10)

The equation (4.9) can be integrated by parts to arrive at the following exact expression

τ(tn + 1t) − τ(tn)e
−1t/tM = K(tn + 1t) + K(tn)e

−1t/tM −
∫ tn+1t

tn

e−t/tM
∂K

∂t
dt. (4.11)

Neglecting the integral, i.e. assumingK(tn + 1t) ' K(tn), we obtain the difference scheme

τn+1 = τn e−1t/tM + Kn(1 − e−1t/tM ). (4.12)

The above difference scheme is consistent everywhere (including wheretM = 0); the exponential time
variation has been retained explicitly. In passing we note that the above procedure can be applied to a large
class of differential constitutive relations that have the form (4.9) with the desired result. We also note
that we could arrive at an implicit or semi-implicit scheme by choosingKn+1 or (Kn + Kn+1)/2 in the
right-hand side of Eq. (4.12). Furthermore making the approximation e−1t/tM ' 1−1t/tM +O(1t/tM)2,
we obtain

τn+1 − τn = 1t

tM
(Kn − τn), (4.13)

which is identical to the original scheme (4.8).
Another consequence of this approach is a natural splitting of the elastic and the viscous stresses. Given

Eq. (4.10), one can write Eq. (4.12) as

τn+1 = τn e−1t/tM + 2µεn − 2µεn e−1t/tM + tM(uuu · ∇τ + ∇uuu · τ + τ · ∇Tuuu)n(1 − e−1t/tM ).

(4.14)

Using 2µεn+1 instead of 2µεn in the second term we can express it as

τn+1 = τn+1
N + τn+1

P , τN = 2µε (4.15)

is the Newtonian part, and the polymeric partτP is given by

τn+1
P = (τ n − 2µεn)e−1t/tM + tM(uuu · ∇τ + ∇uuu · τ + τ · ∇Tuuu)n(1 − e−1t/tM ). (4.16)

Note thattM → 0 givesτP → 0. Elastic viscous stress splitting, originally proposed by Perera and
Walters [47], has been executed in most numerical schemes (see, e.g. [26,28,29]). It allows preserving
the elliptic nature of the problem and thus enhances stability. In fact Sun et al. [28] proposed an adaptive
splitting (AVSS) where the Newtonian part is chosen with a varying artificial solvent viscosity that would
make the elliptic term suitably dominant, and thereby ensure stability. However, in absence of a solvent
viscosity as is the case in UCM (in contrast to Oldroyd-B) the splitting becomes cumbersome, involving
the upper convected derivative of the strain rate tensor. In the above scheme the splitting is natural and
does not involve differentiation of strain rates.

Even in finite difference schemes inclusion of a diffusion operator lends robustness to the iteration
algorithm. Oliveira et al. [36] added a numerical diffusion term in both sides of the momentum equation
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and treated one as an explicit inactive source and the other as an active elliptic operator, the latter giving rise
to the algebraic coefficients that regulate convergence of the iterative algorithm. A similar self-consistent
false diffusion scheme for constitutive equations was used by Huang et al. [48] to make the iteration stable.
It may also be pertinent here to note the recent computation of viscoelastic drops by Toose et al. [41].
He applied a boundary element method based on Stokes Green’s function for an Oldroyd-B fluid. The
Stokes operator is readily available due to the solvent viscosity term; the non-Newtonian part is treated
as a source term using finite element discretization inside the drop. Finite volume implementation of
[37] for an unsteady finite Reynolds number simulation through planar contraction uses a similar explicit
MAC scheme for a single phase flow again for an Oldroyd-B model. All of these attempts demonstrate
the importance of an explicit diffusion operator in the momentum equation, which has been naturally
incorporated in the above analytical integration technique not only for UCM, but for a class of differential
constitutive equations.

The stress terms are discretized on the staggered grid withτxx andτyy being represented at the pressure
nodes that are at the center of an element (with velocity at the element face), andτxy at the vertices of the
elements. This choice has been made to provide proper coupling between the velocity and their driving
stresses as for the pressure term in a Newtonian case. The convective terms in Eq. (4.14) are discretized
with first order upwinding, i.e. while interpolating stress at the velocity node, the value from the upstream
side is used, neglecting the downstream influence. A second-order accurate QUICK scheme was also
implemented after the traditional central differencing failed for high Weissenberg number without any
alleviation of the convergence difficulties.

We should mention that no additional boundary conditions on the stresses are required, unlike single-
phase viscoelastic computation, because at the boundary the fluid is Newtonian, and all of the elastic
stress terms vanish.

4.2.2. ADI for viscous terms
It is well known from the Newtonian literature that the above explicit scheme suffers from dual re-

strictions on time steps, viz. from diffusion at low Reynolds number (1t < 0.25(1x)2/ν) (note that
Mompean and Deville [37] used only the solvent viscosity, which in our case is equal to zero inside
the drop, to define the stability limit equation (24) of their paper) and from advection at high Reynolds
number (1t < 2.0ν/U2

max) ([45], p. 148). For our particular applications relevant to emulsions, the low
Reynolds number constraint is important. As mentioned earlier, the available literature on emulsions is
largely restricted to zero Reynolds number, and we wish to compare our results with these. To relieve the
low Reynolds number restriction on time step, we split the predictor step further, and treat the diffusive
terms by ADI. A similar treatment was first successfully executed by Goda [49] for cavity flows. Eq. (4.5)
for this step is split into three parts,

ρn+1uuu∗∗∗ − (ρuuu)n

1t
= −∇ · (ρuuuuuu)n + Fn + ∇ · τn

P + Dxy(uuu
n), (4.17)

ρn+1

(
uuu∗∗ − uuu∗∗∗

1t

)
= Dyy(uuu

∗∗), (4.18)

ρn+1

(
uuu∗ − uuu∗∗

1t

)
= Dxx(uuu

∗). (4.19)
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The viscous term in Eq. (4.5) is also expressed in three parts,

∇ · τN = Dxy + Dyy + Dxx, (4.20)

whereDxx andDyy are terms involving double derivatives with respect to eitherx or y, andDxy are
the mixed derivatives. Mixed derivatives are treated along with advection in an explicit manner, as in
Eq. (4.17), while the terms involving double derivatives are handled implicitly along alternating di-
rections, firsty (Eq. (4.18)), and thenx (Eq. (4.19)). Each of these implicit equations gives rise to a
tri-diagonal system that is solved by Thom’s algorithm. However, while an explicit scheme does not
require boundary values for the intermediate variables (those marked with∗), they must be prescribed in
an implicit method. We use

uuu∗ = uuu∗∗ = uuu∗∗∗ = uuun+1, at ∂Ω, (4.21)

and consequently the zero Neumann condition on the pressure is retained. Early theoretical studies by
Temam indicated that imposing final step values on the intermediate variables at the boundary is a suf-
ficient condition for convergence as1x, 1t → 0 ([45], p. 165). There have been several attempts to
improve the order of the method by employing smart conditions for the intermediate velocities and the
pressure [50,51]. However, Perot [52] has shown that the present prescription is consistent with an LU
decomposition of the original operator.

Although ADI formally removes the restriction on time steps, it is well known that in practice care is re-
quired when implementing such a fractional step algorithm. We also adhere to a Courant–Frederichs–Lewy
(CFL) criterion1t < 1x/Umax. Furthermore, the maximum norm of the velocity field is monitored for
any unsatisfactory behavior, and the time step is halved when warranted. An explicit Euler integration
scheme was used for time marching. A multigrid method ([53], p. 106) was applied for the solution of
Poisson’s equations for the pressure (4.7) and the indicator function (3.19).

4.3. Algorithm

Here we mention the steps of our algorithm. Given a discretized drop shape, we solve Eq. (3.19) with
the smoothed right-hand side of Eq. (4.3) to obtain a representation of the indicator function, and thereby
find the spatially varying material properties (3.13)–(3.15). The solution is obtained in a regular 2D grid
using a multigrid Poisson solver. Then we solve the single-phase boundary value problem (with smoothly
varying density, viscosity and relaxation time) with the above described ADI finite difference scheme in
the 2D grid to obtain the velocity at the grid points. The smoothed representation (4.4) is used for the
force due to the interfacial tension in Eq. (3.1). The velocity at the grid point is used to interpolate the
velocity at the front points by Eq. (3.11), again using Eq. (4.3) for the delta function. The new interface
is found by moving it with the front velocity (3.10). The front is regridded, comparing the element length
to 1x by insertion/removal of points.

5. Numerical results

The problem is non-dimensionalized, using drop radiusa andγ̇ −1 as the length and the time scales,
respectively. For the steady problem there are five non-dimensional parameters: Reynolds number,
Re = ργ̇ a2/µ, k = Ca−1 = σ/(γ̇ µa) (inverse capillary number),λ = µ∗/µ, λρ = ρ∗/ρ and the
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Weissenberg number,Wi = tM γ̇ . For the case of a vortex, the non-dimensional frequency (Strouhal num-
ber)St = ω/γ̇ = 2. However, for general rotating extensional flows it assumes arbitrary values. Since
we have not considered gravity effects in our simulation,λρ appears in the problem only through the drop
Reynolds number,Re∗ = Reλρ/λ. For brevity, we restrict results to the case ofλρ = 1.0, λ = 1.0. In a typ-
ical experiment with an alcohol (immiscible in water) drop (µ∗ = 0.018 g cm−1 s−1, ρ∗ = 0.82 g cm−3)
of radiusa = 1 cm suspended in water (µ = 0.01 g cm−1 s−1, ρ = 1.0 g cm−3), the interfacial tension
is of the order 1–10 dyn cm−1. Therefore, withγ̇ = 0.1 s−1 one obtainsRe= 10, λ = 1.8, λρ = 0.82
andk, 1000–10,000 ([54], p. 17). We performed a grid convergence study, and found that 81× 81 grid
points, did not show significant changes in drop shape from 129× 129, and therefore an 81× 81 grid
is believed sufficient for our purpose. Similarly the effect of domain size has also been investigated by
increasing it to twice the present size (Lx = Ly = 10.0) with no significant change in results. Note
that Taylor [3,4] suggested a deformation criterionD = (L − l)/(L + l), (whereL (l) is the maximum
(minimum) distance of the drop surface from the center), that is based on the observation that the drop
assumes an approximately elliptical shape in steady shear and extensional flows. Although the same
criterion has been adopted here, we have found that for an arbitrary deformationD, the results can be
misleading. Two nearly identical shapes may result in significantly different values ofD. This is because
D is computed with the information about only two surface points, and therefore is extremely sensitive
to the numerical description of the surface. Our method, based on an interface smoothed over 41x, is
inherently approximate for the exact location of the interface. The choice of an 81× 81 grid (16 grid
points across the drop diameter) is based on an ability to describe the shape rather thanD. From our
convergence study and the satisfactory match with analytical results [2], we believe that the values ofD

computed below depict correct trends.

5.1. Vortex

The literature on emulsions is largely restricted to steady Stokes flow. Our code is limited to low but
finite Reynolds number. As a low Reynolds number case, we chooseRe= 0.1. In [1] we have investigated
the effects of varying interfacial tension and observed that a sufficiently high value of interfacial tension
(i.e. largek) is able to inhibit the growth, keeping the deformation bounded. Moreover,D was seen to
reach a constant value in the large time limit, as though the drop assumes an elliptic shape and goes on
rotating in response to the rotating stretching field. However, the drop does not undergo rigid rotation;
its principal axes of deformation rotate. Fig. 5 shows the evolution ofD = (L − l)/(L + l) (whereL (l)
is the maximum (minimum) distance of the drop surface from the center) with time atk = 7.599. The
evolution ofD for a particular value ofWi shows behavior similar to that of the viscous case [1]. With
increasing Weissenberg number the long-time deformation decreases progressively from its Newtonian
value untilWi ' 0.628. However, forWi = 6.283 the drop displays oscillation with the average value
of the deformation showing an increase fromWi = 0.628. The long-time values ofD have been plotted
in the inset where the non-monotonic behavior is clearly visible. Note that this behavior is different
from that observed in the viscous case [1,2], where with variation of different parameters of the flow
the deformation displayed a ‘resonance’ peak. To explain the behavior, we have offered a simple ODE
model for the problem in the Appendix A, with a linear Maxwell relation. Note that the model is only a
representative one, and is not expected to quantitatively match the solution. However, it serves to explain
the trends of the solution, as well as to emphasize the fact that a viscoelastic constitutive relation is indeed
capable of the complex behavior observed in the numerical solution. The long-time periodic response
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Fig. 5. Effect of relaxation time on drop deformation in a potential vortex;Re= 0.1, k = 7.599. In the inset long-timeD (solid
line) is plotted with varying relaxation time. On the right ordinate the ODE model response, i.e. modulus of Eq. (A.5) is plotted
(dotted line). Note that the range of values are different in right- and left-axes.

(A.5) from the model plotted at the right ordinate axis of the same plot shows similar non-monotonic
behavior. As explained in the Appendix A, the immediate decrease in response with viscoelasticity is due
to the increased spring constant inhibiting the deformation. However, for large enoughWi, the contribution
due to elasticity decreases to zero, and the effect of decreasing damping leads to increased response. In
Fig. 6, we show the long-time revolution of the drop, maintaining the elliptic shape for a specific case of
Wi = 0.6283 at different instants of time over a period of the vortex. The first and the last drop traces,
that are roughly one period away (1t = 6.35, whileT = 2π ), are almost identical.

In Fig. 7, we present the evolution ofD with time for an intermediate Reynolds numberRe = 1.0,
and atk = 12.66. The figure here is very similar to the one forRe = 0.1 marked by decreasingD
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Fig. 6. Drop shapes in a potential vortex att = 38.01, 38.77, 39.59, 40.36, 41.18, 41.94, 42.77, 43.53, and 44.35 (from top left
to bottom right), over a period;Re= 0.1, k = 8.0, tM = 6.283.

with increasingWi and pronounced oscillation for highWi curves. High values ofWi lead to increased
non-linearity in the constitutive equation, leading to the oscillations. In the inset, long-timeD is plotted
as a function ofWi along with the analogous expression from the ODE model. However, for the range
of relaxation time investigated, the computedD does not show any increase, in contrast to the model
solution. We speculate that the reason for continual decrease is due to the energy expended in shear waves
inside the drop due to viscoelasticity. In Appendix B, we have described the physics underlying the wave
phenomenon. Note that from Eq. (B.3)lw/a becomes O(1) for Wi ∼ 10 for this Reynolds number. It is
noted in the viscous computation [1] that higher inertia leads to an overshoot inD before one reaches the
long-time limit, an effect of the finite Reynolds number of the simulation. The initial overshoot is more
prominent in Fig. 8 forRe= 10.0 andk = 38. For this case we experienced convergence difficulty for
simulations at high Weissenberg numbers. The long-timeD shows a decrease withWi in the inset. The
ODE response is entirely different, indicating failure of the model to describe the physics at highRe.
However, it is interesting to note that for this case the ODE response does not show a decrease from the
viscous case, for the inertia term dominates the spring term as explained in the Appendix A. In summary,
the drop settles down as in the viscous case to a steady rotating ‘elliptical’ shape with a long-time value
of D decreasing at least initially with increasingWi and concurrently showing more oscillations.
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Fig. 7. Effect of relaxation time on drop deformation in a potential vortex;Re= 1.0, k = 12.66. In the inset long-timeD (solid
line) is plotted with varying relaxation time. On the right ordinate the ODE model response (dotted line) is plotted.

5.2. Rotating extensional flow

For the vortex flow given by Eq. (3.7), Strouhal number,St= 2. By varyingStone obtains a rotating
extensional flow. One could imagine a circular bath filled with a ferromagnetic fluid to which opposite
magnetic fields are applied along a line through the center (i.e. putting magnets of the same polarity at op-
posite sides of the bath). This could cause a flow where the fluid would be rotating in four cells, due to mass
conservation. Along two orthogonal axes of the bath, flow would be towards and away from the center,
creating a saddle point in the middle. A drop of a second, ordinary fluid suspended at the center is, there-
fore, in an extensional flow with shear rateγ̇ , determined by the strength of the applied magnetic fields.
On rotating the magnetic field around the bath with a frequencyω, the desired rotating extensional flow is
obtained in the vicinity of the drop. We have investigated such a general rotating extensional flow (3.8) in
detail for a Newtonian drop in [1], varying the Reynolds number, frequency and the interfacial tension, and
observed a resonance phenomenon where the deformation behaves non-monotonically with parameters.
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Fig. 8. Effect of relaxation time on drop deformation in a potential vortex;Re= 10.0, k = 38.0. In the inset long-timeD (solid
line) is plotted with varying relaxation time. On the right ordinate the ODE model response (dotted line) is plotted. Note that the
range of values are different in right- and left-axes.

Here we study the deformation in an RE flow (3.8) restricting ourselves toRe= 0.1 and 1.0, and study
the effects ofWi variation. ForRe = 0.1, we first consider a steady extensional flow, i.e.St = 0.0. In
Fig. 9, the drop deformationD is plotted as a function of time for varying Weissenberg number atk = 8.
The growth in deformation is initially steeper than Newtonian, the effect growing withWi, but later they
cross, and the long-timeD is smaller for a more viscoelastic drop. Similar results were observed by Toose
et al. [41], in their inertialess study of an Oldroyd-B drop. They offered an explanation by the presence
of two time-constants in the process, and successfully modeled it using simple exponential functions.
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Fig. 9. Effect of relaxation time on drop deformation in a steady extensional (RE withSt= 0.0) flow; Re= 0.1, k = 8.0.

To study the effects of rotation of the stretching axis for a general rotating flow we chooseSt = 4π

andk = 8 at Re = 0.1 (i.e. the same case for the steady flow in Fig. 9), dynamics of the case having
been described in detail for a Newtonian drop in [1,2]. In Fig. 10, as before,D is plotted as a function of
time for varyingWi. We observe that the long-timeD plotted in the inset along with the ODE response
increases from the Newtonian case untilWi ' 0.5 and then decreases. Note that compared to the vortex
case (Fig. 5), for which all parameters butStare the same (k for the vortex was 7.599, sufficiently close
to the present value of 8),D displays entirely different behavior. The response from the ODE model
shows similar behavior. As mentioned in the Appendix A, depending on which of the two terms (spring
constant and inertia) dominates the dynamics, effects of adding viscoelasticity can be different. In this
case of largeSt (i.e. inertia dominated), apart from increased damping, added elasticity works against
inertia, and therefore leads to an increasedD initially. For Re= 1.0 we plot evolution ofD for k = 50
andSt= 4π in Fig. 11. Here the behavior is dissimilar to what has been seen before in thatD increases
with increasingWi, as is evident from the long-time limit shown in the inset. Here too the effects of a
shear wave are important because of higherReand the results deviate from the ODE response. Note that
from Eq. (B.3)lw/a = 1 for Wi = 0.25, close to the value where the numericalD curve increases from
a temporary plateau.

5.3. Oscillating extensional flow

An oscillating extensional (OE) flow (3.9) can be generated by a four-roll mill [12] by varying the
rotation rate of the rolls in a time-periodic way. Here we briefly present computational results for such a
flow for the same parameter values as those adopted for the RE flow. For an OE flow where the stretching
and the contraction take place alternately along two orthogonal axes, the drop likewise alternates its axes
of extension and contraction [1,2]. In Fig. 12aD is plotted forRe = 0.1, k = 8 andSt = 4π , and
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Fig. 10. Effect of relaxation time on drop deformation in an RE flow;Re= 0.1, k = 8.0, St = 4π . In the inset long-timeD
(solid line) is plotted with varying relaxation time. On the right ordinate the ODE model response (dotted line) is plotted. Note
that the range of values are different in right- and left-axes.

it oscillates from a maximum value to zero as in the viscous case. The effect ofWi is shown for two
successive periods (St = 4π givesT = 0.5), after the initial transients have died away. The maximum
values ofD are seen to vary non-monotonically withWi. The traces of the drop shapes are plotted in
Fig. 12b to depict the oscillatory behavior over a period. The drop is seen to change its axes of contraction
and extension. The perturbative analysis in [2], however, showed (and the numerical results agreed with
it) that the maximumD would be close to that of the RE flow in the long-time limit. For comparison
Dmax for Re= 0.1 and 1.0 are plotted along with their counterpart (D) from rotating extensional flow
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Fig. 11. Effect of relaxation time on drop deformation in an RE flow;Re= 1.0, k = 50.0, St = 4π . In the inset long-timeD
(solid line) is plotted with varying relaxation time. On the right ordinate the ODE model response (dotted line) is plotted. Note
that the range of values are different in right- and left-axes.

(Figs. 10 and 11) in Fig. 13. The curves forRe = 0.1 are closer than forRe = 1.0. However, in both
cases RE and OE flows show remarkable similarity despite their dissimilar nature.

6. Discussion and summary

We have numerically simulated the deformation of a two-dimensional viscoelastic drop suspended in a
Newtonian fluid. The deformation is produced by a flow due to a potential vortex, its generalization that we
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Fig. 12. (a) Effect of relaxation time on drop deformation in an OE flow;Re = 0.1, k = 8.0, St = 4π ; (b) drop shapes in a
potential vortex att = 11.253, 11.313, 11.373, 11.433, 11.503, 11.563, 11.623, 11.683 and 11.753 (from top left to bottom
right), over a period;Re= 0.1, k = 8.0, tM = 0.1.

call rotating extensional flow, and an oscillatory extensional flow at small but non-zero Reynolds numbers.
An ADI front-tracking method is used. Viscoelasticity is modeled by the UCM relation. An analytical
elastic viscous stress splitting has been developed and implemented to treat the non-Newtonian constitutive
equation. Such a treatment can profitably be adopted in a class of differential constitutive equations.
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Fig. 13. Long-time drop response with varying relaxation time in an RE (solid line) and an OE (dotted line) flow; (a) Re=0.1,
k = 8.0, St= 4π ; (b) Re= 1.0, k = 50.0, St= 4π .

As in [1], the velocity field due to the vortex has been modeled in the vicinity of the drop by a linear
flow with time periodic variation. The linearization introduces an error that is of higher order thana/R,
its limitation being discussed in [1].

For the vortex, similar to the viscous case the drop was found to reach a steady value of deformation,
indicating a roughly elliptic shape revolving in response to the rotating stretching flow. Finite inertia leads
to an overshoot in deformation during the initial transient behavior. With higher Reynolds number the
deformation increases, and displays longer and more pronounced transients.

We also investigated drop deformation in a rotating extensional (RE) flow, a generalization of the
vortex induced flow with the frequency of rotation varying independently of the shear rate. Therefore,
the behavior is similar to that in a vortex, in that the drop reaches a steady value of deformation in the
long-time limit. In the zero frequency limit, i.e. for a steady extension, it is found that higher elasticity
gives rise to a steeper dynamics initially followed by lower final deformation value, in agreement with
[41].

As expected, a non-zero relaxation time adds complexity to the results for a Newtonian drop. In the case
of a viscous drop variation of frequency and interfacial tension introduced a resonance behavior, where
the drop deformation showed a marked increase near the parameter values where the natural frequency
matched the forcing frequency [1,2]. In fact, there we found that variation of density ratio, viscosity ratio
and Reynolds number all lead to a characteristic resonance response, albeit with different detail. The
resonance is due to the finite Reynolds number of the computation resulting in a ‘mass’ of the system.
The system behaves like a forced, damped oscillator, with the flow playing the role of the forcing at a
particular frequency, viscosity the damping and the interfacial tension the spring. The observation inspired
a simple ODE model briefly described in Appendix A.

For the present case the variation in relaxation time led to increase and/or decrease in response depending
on other parameters, viz.Re,Standk. In search of an explanation, a linear Maxwell relation was introduced
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in the ODE model of Appendix A. Its response has explained many of the computed trends. The complexity
of the behavior is due to the fact that the Maxwell relation introduces both a damping and an elastic effect,
and the resulting response, therefore, is manifestation of a competition between the two.

In a Maxwell model, keeping all other parameters fixed and increasing relaxation time decreases
the rigidity astM = µ/G, whereG is the modulus of elasticity. However, it also renders the drop
capable of sustaining elastic shear waves. Therefore, a complex wave pattern reflecting off of the drop
interface is formed inside the drop, and it has strong effects on the drop shape. A simple argument for
the importance of waves is presented in Appendix B. It is argued that with increasing relaxation time,
the wavelength decreases and finally becomes comparable to the drop dimension, leading to internal
resonance. This internal wave resonance is different from the resonance discussed above in relation to
the surface deformation. However, the effect of the internal wave field is felt in the surface deformation.
Future analytical work will be devoted towards a detailed exposition of the phenomenon.

For polymer rheology, it is important to note that in a typical time dependent flow, a blob of polymer
along with the long-chain molecules in it experiences a complex unsteady flow similar to the one studied
here. Accordingly, the drop experiences retardation in stretching due to rotation of the flow field, even
though the steady linear flow experiments would predict a larger stretch. Large drops in an emulsion
could experience the finite Reynolds number effects mentioned here.
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Appendix A

In [1] we have presented a simple harmonic oscillator model that explained most of the characteristic
features of the numerical solution including different asymptotic scalings and the resonance phenomenon.
In fact it also predicted the results obtained by unsteady Stokes solution in [2]. Here we extend the model
to Maxwell fluid.

At the outset we briefly repeat the model for a Newtonian fluid. The deformation of a drop due to an
external flow at a finite Reynolds number can be modeled as a damped mass spring system with mass
p̂â3, dampingB, µ̂, and interfacial tension̂T

p̂â3Ẍ + µ̂âẊ + σ̂X = µ̂âG0g(t) + p̂â3G0g(t), Ẋ(0) = G0g(0), X(0) = 0, (A.1)

whereˆ has been used to differentiate the model variables from their real counterparts.
The first forcing term corresponds to the viscous stressµγ̇ . The second term represents that due to

pressure (from the momentum equation,ρ∂u/∂t ∼ ∇p, one can see that a time dependent velocity
G0g(t) will give rise to such a pressure). Note thatG0 is the magnitude of time-dependent shear. The
initial conditions reflect an undeformed drop moving with the imposed flow velocity. For a drop having
densityρ∗ = λρρ, and viscosityµ∗ = λµ, different from that of the continuous phase, the mass and the
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damping terms in the above equations are modified by factors(1 + λρ)/2 and(1 + λ)/2, respectively.
Note these factors reduce to unity for identical material properties in two phases. By scaling length byâ

and time byâ/G0 we obtain

(1 + λρ)

2
R̂e Ẍ + (1 + λ)

2
Ẋ + k̂X = g(t) + R̂e ġ(t), Ẋ(0) = g(0), X(0) = 0, (A.2)

whereR̂e = p̂âG0

µ̂
andk̂ = σ̂ /(µ̂G0) are the Reynolds number and inverse capillary number of the model

problem, respectively. Note that the pressure forcing is absent for Stokes flow (R̂e = 0).
For a viscoelastic drop, specifically, of a Maxwell fluid, stress is given by Eqs. (3.3) and (3.4), which

on linearization and scaling obtains

Ŵ i
∂τ

∂t
+ τ = 2µ∗ε, (A.3)

inside the drop. Assuming time periodicity for all dependent variables∼exp(i Ŝt t) (Ŝt is the model
Strouhal number), we obtain

(i Ŵ i Ŝt + 1)τ = 2µ∗ε (A.4)

whereŴ i is the Weissenberg number. One can interpret the above relation for the drop as a constitutive
equation with a complex viscosityµ∗/(i Ŵ i Ŝt + 1). This consideration replacesλ in the present model
equation byλ/(i Ŵ i Ŝt + 1).

Therefore, for the above ODE model, once a similar periodic variationX = X̃ exp(i Ŝt t) is assumed,
for the long-time periodic solution we obtain

X̃ = 1 + i Ŝt R̂e

−(1/2)(1 + λρ)Ŝt2 R̂e + (i/2)(1 + (λ/(1 + i Ŵ i Ŝt))) St+ k̂
. (A.5)

For Ŵ i = 0, we obtain the damped oscillator for a purely viscous drop, showing the resonance
phenomenon observed and described in [1,2]. For a viscoelastic drop, with non-zeroŴ i the damp-
ing term due to the drop becomes complex. The denominator could be written separating the real and the
imaginary parts[

−1

2
(1 + λρ)Ŝt2 R̂e + k̂ + λ Ŵ i Ŝt2

2(1 + Ŵ i2 Ŝt2)

]
+ i

[
Ŝt

2

(
1 + λ

1 + Ŵ i2 Ŝt2

)]
, (A.6)

clearly showing that the viscoelasticity contributes to both damping and the spring term. It decreases
damping in the imaginary part; in fact in the limit of̂Wi → ∞, one can see from Eq. (A.5) that the term
involvingλ disappears indicating that the drop damping vanishes. Therefore, the response would increase
from the case ofŴ i = 0. However, in the intermediate range the effect of viscoelasticity is complex, for
it also increases spring constant in the real part. Note that for smallŴ i, the first-order effect is only a
linear increase in spring constant. However, as is also evident from the expression this viscoelastic spring
constant goes to zero for large enoughŴ i. Note the similarity of the viscoelastic terms in Eq. (A.6)
with storage and loss moduli (see for instance [55], Eq. (10.24), p. 145) for linear Maxwell models. The
response, therefore, is expected to decrease initially before finally increasing withŴ i. However, it is not
always the case due to the presence of the inertia term in the denominator. If it dominates the spring term
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k̂, the viscoelastic contribution decreases the magnitude of the real part of the denominator of Eq. (A.6)
giving rise to a possible temporary increase from the purely viscous case. All these behaviors due to the
delicate balance of different terms are indeed observed in the plots of the response function Eq. (A.5).

Appendix B

Viscoelasticity gives rise to shear waves in a material ([56], p. 4). In a drop with UCM constitutive
relation, such waves significantly affect the dynamics. With the drop having density and viscosityρ∗ and
µ∗, and the relaxation timetM, one obtains a wave speed

c =
√

G

ρ∗ , G = µ∗

tM
, (B.1)

whereG is the bulk modulus of rigidity. In terms of non-dimensional numbers, we obtain

c2

a2γ̇ 2
=

(
λ

λρ

)
1

Re Wi
. (B.2)

Noting that the wavelengthlw is related to the frequencyω and the wave speed asc = lwω/(2π), we
obtain for non-dimensional wavelength(

lw

a

)2

=
(

2π

St

)2 (
λ

λρ

)
1

Re Wi
. (B.3)

We note that in the pure viscous limit (tM → 0), bulk modulusG and the wave speedc are infinite. From
Eq. (B.3), we see that in that limit wavelength too is infinite. Wave propagation becomes important when
wavelength is comparable to the dimension of the drop, i.e.lw/a ∼ O(1). For a fixedSt, that happens
with increasingWi andRe. To sustain a wave system inside the drop the energy is expended at the cost of
drop surface deformation. On the other hand, the drop with a material boundary provides a confinement
suitable for a standing wave pattern. For other parameters fixed, varying relaxation time results in varying
wave speed, and thereby varying wavelength. At the matching of the circular wave pattern with the drop
geometry, the system is near an internal resonance, giving rise to a increased response.
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