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Numerical investigation of the rheology of a dilute emulsion
of drops in an oscillating extensional flow
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Abstract

The rheology of a dilute emulsion of viscous drops in an oscillating extensional flow is investigated. Deforming drop shape is computed
using a front tracking finite difference method. Excess stresses due to drops are determined using Bachelor’s formula neglecting drop–drop
interactions. We present and discuss the relations between the excess stress and the applied strain rate. We explore the linear extensional
rheology by computing extensional storage and loss moduli. The effects of frequency and surface tension variations are discussed and
compared with analytical models of Oldroyd and Yu and Bousmina. We find that the nature of the excess interfacial stress depends on the
relative magnitudes of the time period of oscillation and the relaxation time of the droplet. The excess stress is predominantly elastic (viscous)
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f the period is much smaller (larger) than the relaxation time. These phenomena are explained using the detail drop dynamics.
2005 Elsevier B.V. All rights reserved.
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. Introduction

The immiscible liquid–liquid system in the form of emul-
ions or blends has important applications in numerous chem-
cal industries. In industrial flows of emulsions, suspended
rops undergo continuous change of shape including coa-

escence and breakup, contributing in turn to time-dependent
tresses for the overall flow. The co-evolving morphology and
heological response are the fundamental focus of emulsion
esearch[1]. Till date, most deformation studies have been re-
tricted to steady shear and extension. Rheological response
or emulsion has been computed mostly for steady shear with
few exceptions of oscillatory shear[2–5]. However, typical

ndustrial flows are far more complex, with large fluctuations,
nd spatial variations, that can only be represented numeri-
ally. In this paper, we report a numerical investigation of
heology in a time-dependent flow, viz., oscillating planar
xtensional flow. This flow is realizable in a four-roll mill
6], and can offer important rheolgical insights, as will be
een here.

∗

Taylor[7] performed the pioneering experimental inve
gation of deforming drops, and developed an analytical th
using Lamb’s Stokes solution. The subsequent higher
analytical investigations were restricted to nearly sphe
[8–11] or slender[12–14] drop shapes (also see[15] for a
review). Doi and Ohta presented a coarse grain theo
stresses in a viscosity matched emulsion[16]. They used
a morphological quantity—interface tensor—introduced
Batchelor to compute excess stresses due to interfacia
sion at the phase boundary[17–19]. The theory is appropria
for describing arbitrary interfacial morphology. However,
to lack of an internal length scale, it gave erroneous resul
emulsion of droplets. Various remedies[20–22] have bee
suggested assuming spherical and ellipsoidal drop sh
Using ellipsoidal shape assumption, Maffettone and Mi
developed a phenomenological tensor model for shape
lution of drops in arbitrary linear flows[23]. The model ha
been experimentally validated for moderate drop defo
tion [24,25]. The connection of the drop morphology w
rheology was developed by Jansseune et al.[26,27]. Wetze
and Tucker proposed two exact tensor formulations[28,29]
Corresponding author. Tel.: +1 302 831 0149; fax: +1 302 831 3619.
E-mail address:sarkar@me.udel.edu (K. Sarkar).

for the affine deformation of ellipsoidal drops. They noted
that in a linear flow field, the drop shape is exactly ellipsoidal
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in the absence of interfacial tension. The theory was extended
to approximately account for finite interfacial tension using
both small-deformation and slender-body analysis[30]. Wu
et al.[31] and Yu and Bousmina[32] combined the ellipsoidal
drop models with boundary integrals in order to find a more
accurate surface velocity or velocity gradient.

Numerical simulations eliminate any restriction on drop
shapes. Large deformation with non-ellipsoidal shape can be
treated without using any approximation. Boundary element
method (BEM) has been used to study arbitrary deformation
including breakup[33,34] and strongly interacting drops in
concentrated emulsions[35,36]in a Stokes flow. The flow at
finite Reynolds number are computed by a number of direct
numerical simulations (DNS) such as volume of fluid (VOF)
[37], level set method (LSM)[38] and front tracking method
[39]. With advancing computing power, DNS is becoming
a viable tool for simulation of multi-drop morphology, and
direct computation of rheological response.

Sarkar and Schowalter[40,41]applied front tracking DNS
to simulate deformation of a two-dimensional viscous drop in
time-periodic extensional flows. The method was extended to
viscoelastic drops[42]. Three-dimensional drop deformation
in an oscillating extensional flow at finite Reynolds number
has recently been computed[43], exploring drop behaviors
in detail. In this paper, we use the same simulation technique
at a Reynolds number,Re= 0.1 (as a representative of Stokes
fl ber
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Fig. 1. Schematic of (a) a dilute emulsion in an oscillatory extensional flow
and (b) the two-phase Navier–Stokes formalism.

whereε̇0 is the amplitude of the strain rate; andω, the fre-
quency of oscillation. The flow can be generated by an os-
cillating four-roll mill (Fig. 1a). The dispersed droplets in
such a flow experience identical straining. Also note that
although the forcing flow is restricted in thex–y plane,
the presence of droplets induces fluid motion and excess
stress in thez-direction, giving rise to a three-dimensional
problem.
ow; the code can handle only non-zero Reynolds num
ases) to obtain the rheological response of a dilute em
ion in an oscillating extensional flow. Both drop and con
ous phases are Newtonian. For brevity, we present re
nly for viscosity matched cases, and concentrate on the
ewtonian response of the emulsion due to the presen

nterfacial tension.
In the following, mathematical formulation of the dr

roblem and its numerical implementation are briefly
ussed in Section2. The expressions for stresses and mo

n oscillating extensional flow are developed in Sectio3.
n Section4, we discuss our simulation results. A syste
tic study of the oscillating stress and its relations with

mposed strain rate, i.e., the loss and storage moduli, is
ented. Effects of flow frequency and interfacial tensio
he excess stress are investigated. We also present a co
son with the moduli computed by Oldroyd[44,45] and Yu
nd Bousmina[4]. Finally, Section5 summarizes the resul

. Mathematical formulation and numerical
mplementation of the flow

.1. Planar oscillating extensional flow

We study flow of an emulsion in a planar oscillating
ension:

u

v

w


 = ε̇0 cos(ωt)




0 1 0

1 0 0

0 0 0






x

y

z


 , (1)



X. Li, K. Sarkar / J. Non-Newtonian Fluid Mech. 128 (2005) 71–82 73

2.2. Governing equations

The flow of the Newtonian fluids in the entire domainΩ,
which consists of the continuous phaseΩc and the suspended
dropsΩd (Fig. 1b) is governed by the Navier–Stokes equa-
tion

∂(ρu)

∂t
+ ∇ · (ρuu) = −∇p−

∫
∂B

dxBκnΓ δ(x− xB)

+ ∇ · [µ{∇u+ (∇u)T}], (2)

wherep is the pressure;ρ, the density andµ, the viscosity
of the fluid. The superscript ‘T’ represents transpose.∂B is
the drop–fluid interface consisting of pointsxB; Γ , the con-
stant interfacial tension;κ, the local curvature;n, the outward
normal to the interface; and�(x− xB), the three-dimensional
Dirac delta function. The interfacial tension, which produces
a jump in the normal stress across the interface, is represented
as a singular body force[39,40]. The variation of interfacial
tensionΓ , e.g., due to presence of surfactant concentration
gradient is not considered. The evolution of interfacexB is
coupled with the fluid velocityu by:

dxB
dt

= u(xB). (3)

The velocity field is incompressible, i.e.,∇ · u = 0.
p in
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Fig. 2. Drop surface discretized by triangular elements.

obtains a Poisson equation which is solved using a multigrid
method. The velocity at the 3D grid is interpolated to front
nodes, and the front is updated to obtain its new position. To
prevent the front element from being excessively distorted,
an adaptive regridding scheme is implemented for the front.
The explicit scheme is inherently limited to finite Reynolds
number, and suffers from severe diffusion limited restrictions
on time steps at low Reynolds numbers. We useRe= 0.1 for
all our computation as a representative case for low Reynolds
number. To overcome the time step restriction, we treat the
diffusive terms semi-implicitly in alternate spatial directions
(ADI). ADI enhances the efficiency of the simulation by one
order of magnitude.

2.4. Non-dimensional parameters

The mathematical problem can be non-dimensionalized
using undeformed drop radiusRand inverse extensional rate
ε̇−1

0 as the length and the time scales, respectively. We obtain
five non-dimensional parameters—Reynolds number,Re =
ρε̇0R

2/µ; inverse capillary number,k = Ca−1 = Γ/(ε̇0µR);
viscosity ratio,λ=µd/µ; density ratio,λ� =ρd/ρ and the non-
dimensional frequency Strouhal number,St = ω/ε̇0. The
subscript ‘d’ represents the drop phase. As already men-
tioned, we restrict the simulation toRe= 0.1 (see[43] for ef-
fects of Reynolds number variation on drop deformation). For
b mul-
s ess
s e can
h

3

3

rmi-
n

We simulate the time evolution of a single viscous dro
he planar extensional flow(1). For a dilute emulsion, the in
eractions between different drops can be neglected, and
rop can be assumed to undergo identical shape evol
ote that the numerical implementation discussed below
imulate strongly interacting multiple-drop systems[39].

.3. Numerical implementation

The incompressible flow satisfying Eq.(2) is solved by
ront tracking method[39,40,42]. We simulate the flow i

finite computational domain, a cubic box of sizeL. At its
oundary, the planar extensional flow(1) is imposed. Th
ethod treats the entire flow system as a single phase
aterial properties varying sharply in a thin region (a few
oints) across the interface. The stress due to surface te

s treated as a distributed force over the same thin regio
sing a smooth representation of the Dirac delta functio
q.(2). Here, we provide only a brief description (see[40,43]

or further details). The method uses a 3D staggered g
he entire domain and a triangular grid (Fig. 2) that discretize
he drop surface (front). Using the front position, a smoo
escription of the material property is obtained. It redu

he multiphase flow into a single phase with varying pr
rties. The single phase flow is then solved by an ope
plitting/projection finite difference method. In the first st
n intermediate velocity is obtained using all terms in(2) ex-
ept the pressure gradient. The intermediate velocity is
orrected using pressure gradient so that the final velocit
sfies divergence condition. The pressure gradient corre
revity, we consider a viscosity and density matched e
ion, resulting in only an interfacial contribution to the exc
tress. Note that the numerical scheme introduced abov
andle non-uniform material properties.

. Interfacial stress and extensional moduli

.1. Interfacial stress averaging

An emulsion can be viewed as a statistically indete
ate collection of droplets in a continuous phase[17]. The
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stress measured in experiments is an average over an ensem-
ble of realizations. It is equivalent to a volume average with
an appropriate volume chosen to satisfy the condition of sta-
tistical stationarity and homogeneity. The averaging proce-
dure was introduced by Batchelor and extensively deployed
in suspensions[18,22]. As pointed out by Jansseune et al.
[26,27], the average stress can be divided into two contribu-
tions, one from the component fluids and the other from the
interface.

For both dispersed and the continuous phases satisfying
Newtonian constitutive relation, the averaged stressσavecan
be expressed as[1,17–19]:

�ave = 1

V

∫
V

� dV

= −PaveI + �ave+ µd − µ

V

∑ ∫
Ad

(un+ nu) dA

−Γq, (4)

whereV is the averaging volume,Vd andAd are the volume
and surface area of a typical drop.Pave is the isotropic part
of the average stress;I , the identity tensor, andτave is the
deviatoric part of the average “component” stress[26,34].
The third term is the contribution due to viscosity difference
between the drop and the continuous phases. It becomes zero
f g the
c
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3.2. Interfacial extensional moduli

From one-drop excess stress and its phase relation with the
imposed flow strain, the complex moduli can be calculated.
Taking the coordinate axes along the axes of extension [clock-
wise rotated byπ/4 from thex–y axes of Eq.(1)], we obtain
the principal directions for the excess stress. It takes diagonal
form due to the symmetry of drop shape:

∑d

excess
=




∑d
11 0 0

0
∑d

22 0

0 0
∑d

33


 (8)

The oscillating extensional flow(1) in diagonal form gives
rise to equal positive and negative strains along the exten-
sional axes:

ε =
∫
ε̇dt = ε̇0

ω
sinωt = 1

St
sin(t′St), (9)

where t′ = tε̇0 is non-dimensional time andε0 = ε̇0/ω =
1/St is the strain amplitude. We consider the non-dimensional
normal stress difference,

∑d
22 − ∑d

11. Denoting the phase
difference between

∑d
22 − ∑d

11 and the imposed flow strain
asδ, we have:
∑d

22
−

∑d

11
= (

∑d

22
−

∑d

11
)
0

sin(t′St + δ), (10)

where superscript ‘0’ represents amplitude. Therefore, by ex-
amining the in-phase and the out-of-phase parts of

∑d
22 −∑d

11, we obtain non-dimensional storage and loss moduli,
respectively:

Ed′
int = (

∑d

22
−

∑d

11
)
0
St cosδ,

Ed′′
int = (

∑d

22
−

∑d

11
)
0
St sinδ. (11)

Using Eqs.(7), (8) and (11), we compute the extensional
moduli for various flow parameters such as frequencies (St)
and interfacial tension (k).

3.3. Oldroyd’s and Yu and Bousmina’s model

Oldroyd [44,45] derived analytical expressions for lin-
ear viscoelasticity of a dilute Newtonian emulsion using an
asymptotic approach. He obtained Jeffrey’s equation:

� + τ1
d

dt
� = 2µ0

(
ε̇ + τ2

d

dt
ε̇

)
(12)

with

µ0 = µ(1 + A1Φ), τ1 = τ0(1 + A2Φ),

τ2 = τ0(1 − A3Φ),

A1 = (5λ+ 2)

[2(λ+ 1)]
, A2 = (19λ+ 16)

[5(λ+ 1)(2λ+ 3)]
,

A3 = 3(19λ+ 16)

[10(λ+ 1)(2λ+ 3)]
, τ0 = (19λ+ 16)(2λ+ 3)µR

[40Γ (λ+ 1)]
(13)
or λ= 1. The fourth term is the excess stress representin
ontribution of the interfacial morphology:

excess= −Γq, q = 1

V

∑ ∫
Ad

(
nn− I

3

)
dA. (5)

hereq is the anisotropy or interface tensor[1,16], is a purely
eometric quantity;n, as before is the outward unit norm
ector at the drop interface; and∂B consists of all drop–flui
nterfaces. The interface tensor is calculated by nume
ntegration over the discretized interface (Fig. 2).

For a dilute emulsion consisting ofm identical droplet
ith volumeVd and surface areaAd in the averaging volum
, the interface tensor can be expressed as a sum of indiv
rop contributions:

= Φqd, qd = 1

Vd

∫
Ad

(
nn− I

3

)
dA, (6)

hereΦ=mVd/V is the volume fraction of drops. The exc
tressσexcessnon-dimensioanlized byµε̇0 is

excess
≡ �excess

µε̇0
= Φ

∑d

excess
,

d

excess
= − Γ

µε̇0
qd = −kRqd. (7)

ote that as expected in this non-interacting dilute
em, the stress is linear with volume fraction. The sin
rop non-dimensionalized excess stress

∑d
excess depend

nly on the drop shape and is computed from the nume
imulation.



X. Li, K. Sarkar / J. Non-Newtonian Fluid Mech. 128 (2005) 71–82 75

For oscillating flows, assuming periodic variation for the
stressσ =σ0 exp(iωt) and the strain ratė� = �̇0 exp(iωt), we
obtain from Eq.(12):

(1 + iωτ1)� = 2µ0(1 + iωτ2)�̇ (14)

In a planar extensional flow along the principal direction

�̇ = ε̇0




1 0 0

0 −1 0

0 0 0




notingε = ∫
ε̇dt = ε̇/ iω, the complex extensional modulus

non-dimensionalized byµε̇0 is:

E = 1

µε̇0

σ22 − σ11

ε
= i4St

µ0

µ

1 + iωτ2

1 + iωτ1
. (15)

Note that the extensional modulusE in a planar extensional
flow and the shear modulusGare related by the Trouton ratio:
E= 4G. Using(13), Eq.(15), after linearization with respect
toΦ, becomes:

E = i4St[1 + (A1 − A2 − A3)Φ] + i4St
A2 + A3

1 + ω2τ2
0

Φ

+4Stωτ0
A2 + A3

2 2Φ. (16)

T de-
p t,
e nd a
l

N od-
u e
fi od-
u
E

th
l ions.
F rage
a
a

G

w

B

the second step being a linearization inΦ. For viscosity
matched drop (λ= 1), the model predicts:

G′
int = 4ω2τ2

0k

5(1+ ω2τ2
0)
Φ, G′′

int = 4ωτ0k

5(1+ ω2τ2
0)
Φ (20)

Comparing with the Oldroyd model(17) for λ= 1, we obtain
E (Oldroyld) = 4G (Bousmina). In this limit the models are
equivalent.

4. Results

We simulate a single viscous drop in a box-shaped do-
main as shown inFig. 3, with oscillating extensional flow
imposed at the domain boundary. The undeformed drop ra-
diusR is one-tenth the domain sizeL. By varying domain
size, we have ensured that the simulation is independent of
the size of the domain. We also checked for grid-convergence
by increasing the discretization from 81× 81× 81 to
129× 129× 129 without finding significant change in the
result.

4.1. Oscillating droplet morphology

The drop in a linear flow maintains an approximate ellip-
s ids
w
s axi-
m nd
t nter,
a t the
m rec-
t The

F . An
o

1 + ω τ0

he modulus is further decomposed into a bulk part (in
endent of interfacial relaxationτ0) and an interfacial par
ach of which consists of a storage modulus (prime) a

oss modulus (double prime):

E = E′ + iE′′ = (E′
bulk + E′

int) + i(E′′
bulk + E′′

int),

E′
bulk = 0, E′

bulk = 4St[1 + (A1 − A2 − A3)Φ],

E′
int = 4Stωτ0

A2 + A3

1 + ω2τ2
0

Φ, E′′
int = 4St

A2 + A3

1 + ω2τ2
0

Φ.

(17)

ote that the linearization in volume fraction leads to m
li proportional to volume fractionΦ, appropriate for th
rst order theory of a dilute emulsion. The one-drop m
li are obtained dividing the above expressions byΦ as in
q. (7).
Recently, Yu and Bousimina[4] presented a model for bo

inear and nonlinear shear rheology of Newtonian emuls
or small amplitude oscillatory shear, the interfacial sto
nd loss shear moduli non-dimensionalized byµε̇0 are given
s (Eqs.(16)–(18)in [4]):

′
int = B1ω

2τ2
0

µε̇0(1 + ω2τ2
0)
, G′′

int = B1ωτ0

µε̇0(1 + ω2τ2
0)
, (18)

here

1 = 20(λ+ 1)

(2λ+ 3)[5(λ+ 1) − (5λ+ 2)Φ]

Γ

R
≈ 4Φ

2λ+ 3

Γ

R
,

(19)
oidal shape[24,25]. We plot the three axes of the ellipso
ith non-dimensional timet′ = tε̇0 in Fig. 4a. The initially
pherical drop oscillates with the imposed flow. The m
um (L) and the minimum (B) axes are the maximum a

he minimum distances of the drop surface from its ce
nd they lie in the plane of the extension. The points a
aximum and minimum distances switch when the di

ion of extension changes in the course of oscillation.

ig. 3. A spherical drop is initially placed at the center of the domain
scillatory extension flow is imposed at the boundary of the domain.
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Fig. 4. (a) Drop axes evolving with non-dimensional time in an oscillatory extensional flow; length, L (solid); breadth, B (dash-double-dotted); width, W
(dashed). (b) Drop shape in one period in steady state;Re= 0.1,St= 4π, k= 10.

width axisW, which is the maximum distance in the direc-
tion perpendicular to the plane of extension, does not change
much (W/R∼ 1.0), indicating that the deformation is small in
the direction orthogonal to the plane of the flow. These axes
reach a steady-oscillating state following a short transient.
The frequency of drop oscillation follows the frequency of
the imposed flow. InFig. 4b, the top view (z-direction) of drop
shape in the oscillating flow is shown together with the flow
field in a plane through the center of the drop. The drop expe-
riences stretching in alternate orthogonal directions. Within
one period of the flow, the deformation reaches maximum
twice. The maximum deformation does not coincide with the
maximum strain rate (velocity) of the flow (first, third, fifth
frames), indicating a finite phase lag in the drop response. As
will be seen shortly, the excess stresses, which result from
interfacial tension acting at the drop boundary, oscillate sim-
ilarly with the imposed strain rate.

We study drop deformation using the parameterD=
(L−B)/L+B, suggested by Taylor[7]. In Fig. 5, we sum-
marize the drop response as a function of non-dimensional
frequencySt, and interfacial tensionk. As we saw inFig. 4a,
the drop performs a steady oscillation following a short tran-
sient. InFig. 5a, the maximum deformationDmax and the

phase differenceβ (=π/2− δ) between deformationD and
flow strain rateε̇ are plotted as functions ofSt, at a con-
stant interfacial tension parameterk = 45. At relatively high
frequencies (St> 5π), Dmax decreases with increasing flow
frequency. Increased frequency leads to quick reversals of
flow direction so that the drop does not deform appreciably.
The slight increase inDmax for lower frequencies (St> 5π)
leading to a peak is a resonance effect of the low but finite
inertia, explained in detail in[43]. The phase differenceβ
increases from 0 toπ/2 with the increase of flow frequency
St. At low frequencySt→ 0, the deformation is in phase with
the strain ratėε. As St→ ∞, the deformation isπ/2 behind
the strain ratėε, but in phase with the flow strainε. In Fig. 5b,
we plot the same quantitiesDmax andβ with varying interfa-
cial tension parameterk subject to the same flow frequency
(St= 4π).Dmax displays monotonic decrease with increasing
k for k> 10. Increased interfacial tension restrains drop de-
formation. Similar toFig. 5a, we see a small peak caused by
finite inertia at lower values ofk. The phaseβ decreases with
increasingk. For extremely high interfacial tension, the de-
formation is in phase with the strain rate. The drop response
is discussed in detail with the help of a simple damped mass-
spring model in[43].
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Fig. 5. (a)Dmax andβ vs.St; Re= 0.1,k= 45; (b)Dmax andβ vs.k; Re= 0.1,St= 4π.

4.2. Excess stress

From the simulated drop shape, we compute one-drop
excess non-dimensional stress

∑d
excess, appropriate for a di-

lute emulsion. InFig. 6, we investigate the non-dimensional
excess stress differenceΣd

22 −Σd
11 and its relation to the

imposed strain ratėε/ε̇0. The sinusoidal variation of the
strain rate (dashed curve) is plotted at top left. In the sub-
sequent plots,Σd

22 −Σd
11 is shown in the steady-oscillation

state (t′ > t′steady) for the same interfacial tension parameter
k= 45 but different flow frequencies (St=π, 8π, 20π).
The magnitude of the stress difference decreases due to
decreased drop deformation with increasing flow frequency
(seeFig. 5a). To demonstrate the phase of stress oscillation,
the timet′ is scaled bySt(t′St=ωt). For drops with moderate
interfacial tensionk= 45, at a low flow frequencySt=π,
the resulting excess stress differenceΣd

22 −Σd
11 is in phase

with the strain rate of the flow. However, at a high frequency
St= 20π, Σd

22 −Σd
11 lags byπ/2 behind strain rate, with

intermediate phase lag forSt= 8π. The stress–strain rate
relation indicates that the emulsion behaves as a viscous

liquid at low frequencies, and elasticity takes precedence as
the frequency increases. The oscillation of stress is closely
related to the oscillation of drop deformation. InFig. 7, the
top view of the drop (fromz-direction) is shown together
with the velocity field in the plane through the center of the
drop. For both low (St=π) and high (St= 20π) frequencies,
the shape of the deformed drop at different time-instants
are plotted. At a low frequencySt=π, the drop deforms in
phase with the strain rate, the latter represented by velocity
vectors. At a high frequencySt= 20π, a phase difference
of π/2 exists between the deformation and the strain rate.
As the strain rate achieves maximum (bottom left and right
frames), deformation approaches zero. For zero strain rate
(bottom middle frame), deformation reaches the maxi-
mum.

In Fig. 8, similar curves as those inFig. 7 are shown.
However, drops with different interfacial tension (k= 1, 50,
200) are forced by a flow with the same frequencySt= 4π.
At low interfacial tensionk= 1,Σd

22 −Σd
11 lags byπ/2 be-

hind the strain ratėε/ε̇0. At high interfacial tensionk= 200,
Σd

22 −Σd
11 is in phase with the strain rate, with a transi-
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Fig. 6. Variation of flow strain rate (top left) and one-drop excess stress differenceΣd
22 −Σd

11 (others), during one period of steady oscillation;k= 45,Re= 0.1.

tion at intermediate values of interfacial tension. However,
note that for the low value of interfacial tensionk= 1, the
stress is much less than those for the other two cases. In
the limit of zero interfacial tension, the excess stress is in
phase with the flow strain, characteristic of an elastic ma-
terial, due to the fact that the drop shape follows the flow
strain. The drop deformation rate is in phase with the im-
posed strain rate, and thereby the drop shapeπ/2 behind the
strain rate. The excess interfacial stress is proportional to
drop deformation. For high interfacial tension, drop is more
elastic; its deformation is in phase with the strain rate, giv-
ing rise to interfacial stress proportional to imposed strain
rate, a viscous behavior. Therefore, when the drop behaves
as a viscous system at low interfacial tension, the resulting
interfacial stress of the emulsion is elastic, and when the drop
behaves like an elastic system at high interfacial tension, the
interfacial stress is viscous. Note that we are only concerned
here with the excess stress, and not the total stress which in-
cludes the stresses due to the component liquids. Even though
the excess interfacial stressΣd

22 −Σd
11 is elastic at low inter-

facial tension, it vanishes in proportion with the interfacial
tension. In the limit of an infinitely large interfacial tension,
the excess stress is viscous, because the drop does not deform
much. The overall emulsion behavior is viscoelastic for mod-
erate values of interfacial tensions where drop deformation is
significant.

4.3. Complex interfacial extensional moduli

We investigate the linear extensional rheology using stor-
age and loss moduliEd′

int andEd′′
int introduced in Section3.2.

We compare with analytical expressions for moduli obtained
by Oldroyd[44,45](the same as that due to Yu and Bousmina
[4]). In Fig. 9a, the variation of the non-dimensional inter-
facial extensional moduli with frequencySt is shown. Our
results match very well with analytical prediction. At low
flow frequency, the phase differenceδ between stress and
strain approachesπ/2 (δ=π/2−β), so thatEd′

int approaches

zero much faster thanEd′′
int. In this case, viscous dissipation is

dominant and the emulsion behaves like a Newtonian fluid.
As the imposed flow frequency increases,δ decreases such
that the curve ofEd′

int andEd′′
int cross each other. Both viscous

dissipation and elasticity are significant rendering the emul-
sion viscoelastic. At the other end of high flow frequencies,
δ approaches zero andEd′

int is much larger thanEd′′
int, indi-

cating strong elasticity. In conformity with analytical results
(17)and(20), for St→ ∞ we findEd′

int → 16k/5 = 144 and

Ed′′
int → 0. Our results seem to deviate from the analytical the-

ories at high frequencies (St= 3π). It is an effect of small but
finite inertia. The unsteady term∂(ρu)/∂t in Navier–Stokes
Eq. (2) is ∼O(ReSt). At sufficiently high frequency, even
for the present case of smallRe= 0.1, it can become sig-
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Fig. 7. Top view of the drop fromz-direction in the plane through the center of the drop for three different time-instants forSt=π (top) andSt= 20π (bottom);
k= 45,Re= 0.1.

Fig. 8. Variation of flow strain rate (top left) and one-drop excess stress differenceΣd
22 −Σd

11 (others), during one period of steady oscillation;St= 4π,Re= 0.1.
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Fig. 9. Non-dimensional one-drop extensional moduli vs.Statk= 45 (a), vs.k atSt= 4π (b), and vs.St/k (c) along with Oldroyd’s and Bousmina’s models.

nificant, and lead to deviation from the Stokes-regime
predictions.

In Fig. 9b, we plot interfacial moduli versus inverse cap-
illary numberk. The results match analytical prediction. For
small interfacial tension,δ approaches zero, so thatEd′′

int ap-

proaches zero much faster thanEd′
int. As interfacial tension in-

creases,δ increases such that the curve ofEd′
int andEd′′

int cross

over. At high interfacial tension,δ approachesπ/2 andEd′′
int

is much larger thanEd′
int. The analytical results(17)and(20)

predictEd′
int → 0, andEd′′

int → 7St = 28π ask→ ∞. The be-
havior is in conformity withFig. 8, where we saw that when
the drop behaves like a viscous system at low interfacial ten-
sion, the emulsion interfacial stress is elastic, and vice versa.

In fact, the effects of variation in interfacial tension and
frequency can be better understood by noting that the dy-
namics is governed by a competition between the relaxation
time scaleτ0 ∼µR/Γ [see Eq.(13)] due to interfacial tension
and the time period of oscillationω−1 [46]. Accordingly, we
plot in Fig. 9c the non-dimensional moduli shown inFig. 9a

and b further scaled byk as a function ofSt/k. Such a func-
tional dependence is also predicted by the analytical result
(20), noting thatωτ0 ∼St/k. The plots for fixedkand fixedSt
match each other for smaller values ofSt/k. The discrepancy
for largerSt/k can be attributed to finite Reynolds number
effects∼O(ReSt).

5. Summary

We have investigated extensional rheology of a dilute
emulsion of drops using direct numerical simulation. The
exact drop dynamics was computed using a front tracking
method in an oscillating extensional flow. The drop shape is
used to find the excess interfacial stress and interfacial moduli
of the emulsion. The theory is linear in the volume fraction.
The simulation results match the analytical predictions due
to Oldroyd or Yu and Bousmina. The interfacial stress fol-
lows the evolving drop shape, particularly its phase giving
rise to complex rheological response varying with frequency
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and interfacial tension. As expected, the interfacial excess
stress is predominantly viscous (elastic) for time period of
oscillation much larger (smaller) than the relaxation time; the
phenomenon is explained with the help of the drop dynamics.
The drop–drop interaction neglected in the present analysis
plays a significant role in a non-dilute emulsion. The methods
used in this paper can be extended to investigate the rheology
of concentrated emulsions, emulsions of viscoelastic drops
[47,48]and emulsions at high drop inertia.
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