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The dynamics of a drop deforming, orienting and moving in a shear flow of a
viscoelastic liquid near a wall is numerically investigated using a front-tracking finite-
difference method and a semi-analytic theory. The viscoelasticity is modelled using
the modified FENE-CR constitutive equation. In a Newtonian system, deformation in a
drop breaks the reversal symmetry of the system resulting in a migration away from
the wall. This study shows that the matrix elasticity reduces the migration velocity, the
reduction scaling approximately linearly with viscoelasticity (product of the Deborah
number De and the ratio of polymer viscosity to total viscosity β). Similar to a
Newtonian system, for small Deborah numbers, the dynamics quickly reaches a quasi-
steady state where deformation, inclination, as well as migration and slip velocities
become independent of the initial drop–wall separation. They all approximately scale
inversely with the square of the instantaneous separation except for deformation which
scales inversely with the cube of separation. The deformation shows a non-monotonic
variation with increasing viscoelasticity similar to the case of a drop in an unbounded
shear and is found to influence little the change in migration. Two competing effects
due to matrix viscoelasticity on drop migration are identified. The first stems from
the reduced inclination angle of the drop with increasing viscoelasticity that tries to
enhance migration velocity. However, it is overcome by the second effect inhibiting
migration that results from the normal stress differences from the curved streamlines
around the drop; they are more curved on the side away from the wall compared
with those in the gap between the wall and the drop, an effect that is also present
for a rigid particle. A perturbative theory of migration is developed for small ratio
of the drop size to its separation from the wall that clearly shows the migration
to be caused by the image stresslet field due to the drop in presence of the wall.
The theory delineates the two competing viscoelastic effects, their relative magnitudes,
and predicts migration that matches well with the simulation. Using the simulation
results and the stresslet theory, we develop an algebraic expression for the quasi-steady
migration velocity as a function of Ca, De and β. The transient dynamics of the
migrating drop is seen to be governed by the finite time needed for development of the
viscoelastic stresses. For larger capillary numbers, in both Newtonian and viscoelastic
matrices, a viscous drop fails to reach a quasi-steady state independent of initial
drop–wall separation. Matrix viscoelasticity tends to prevent drop breakup. Drops that
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break up in a Newtonian matrix are stabilized in a viscoelastic matrix if it is initially
far away from the wall. Initial proximity to the wall enhances deformation and aids in
drop breakup.
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1. Introduction
In a wall-bounded shear flow, a spherical particle does not experience any lateral

motion across streamlines in the absence of inertia due to the reversibility of Stokes
flow (Saffman 1956; Bretherton 1962; Leal 2007). However, in the case of a viscous
drop, deformation destroys the fore–aft symmetry and thereby the reversibility. The
deformed particle experiences a lift and migrates away from the wall. Migration can
also be induced by effects other than deformation (i.e. inertia and viscoelasticity) that
also break the symmetry. Here, we numerically investigate the migration of a sheared
viscous drop near a wall in a viscoelastic liquid.

Migration of particles plays a critical role in many situations. In polymer processing,
it can generate a non-uniform filler distribution (Hegler & Mennig 1985). In blood
flow, it is responsible for the reduction of hematocrit (Fahraeus effect) and apparent
viscosity (Fahraeus–Lindqvist effect) in smaller capillaries and margination of white
blood cells, a crucial step in leukocyte cascade and thereby the immune response
(Tangelder et al. 1985). For purely viscous systems, lateral migration of wall-bounded
particles and drops has been investigated in many experiments and theoretical studies
considering a number of different effects: single versus two walls, effects of inertia
and gradient of shear rate (e.g. in Poiseuille flow); see the review by Leal (1980) for
research prior to 1980. For a wall-bounded simple shear, migration of a viscous drop
away from the wall was seen by Goldsmith & Mason (1962) and was theoretically
predicted by Chaffey, Brenner & Mason (1965) using a first-order perturbative theory,
which was subsequently experimentally validated by Karnis & Mason (1967). The
perturbative analysis was extended by Chan & Leal (1979) to cases involving two
walls, the presence of shear rate gradient and a viscoelastic second-order suspending
fluid. More recently, Smart & Leighton (1991) developed an elegant theoretical result
relating drift of a drop away from a wall to the stresslet field due to the drop and
the resulting normal stresses in a dilute emulsion. They successfully compared it with
the drift measured in a Couette device. Migration was numerically simulated using
boundary element method (BEM) and compared with analytical results (Uijttewaal,
Nijhof & Heethar 1993; Kennedy, Pozrikidis & Skalak 1994) to show that the latter
lose accuracy for small wall distance and large deformation, as well as when the
transient time scale of deformation is much larger than that of migration.

Non-Newtonian effects can profoundly change particle motion. Saffman (1956) first
suggested that the indeterminacy in the Stokes flow – spheroidal particles are predicted
to move in Jeffrey’s orbits (Jeffery 1922) decided by their orientation at the initial
instant, while experimentally they were observed to take up preferred orientation – can
be resolved in presence of non-Newtonian effects of the surrounding medium. Karnis
& Mason (1966) experimentally observed that solid spheres migrate towards the outer
wall in a Couette flow of viscoelastic fluids. Mason’s group performed a number
of detailed investigations of particle and drop motion in viscoelastic Couette and
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Poiseuille flows (Gauthier, Goldsmith & Mason 1971a,b; Bartram, Goldsmith &
Mason 1975). In a Poiseuille flow, rigid particles move towards the centre line in
a viscoelastic liquid, but towards the wall in a viscous shear-thinning liquid; drops
also move towards the centre line in a viscoelastic liquid but to an intermediate
position between wall and the centre line in a viscous shear thinning liquid. Migration
of a rigid sphere in a second-order fluid was analysed using a perturbation method
by Leal and coworkers (Ho & Leal 1976; Chan & Leal 1977) to obtain qualitative
agreement with the experimental observation that a sphere moves towards minimum
shear rate, and therefore no migration in a pure shear due to absence of shear rate
gradient. The authors later analysed the case of a slightly deformed drop (Chan &
Leal 1979). Here, the perturbation was extended to a higher order (in the ratio of
drop radius to the gap width) that predicted a migration of rigid sphere away from the
wall even in a constant shear flow. The authors also concluded that the disagreement
between the prediction from the perturbation study and the experiments indicated
inadequacy of the second-order fluid model to account for strong viscoelastic effects
in presence of walls (see the excellent review of particle motions in non-Newtonian
fluids by Leal (1979)). In the 1990s, Feng and Joseph performed detailed experimental
and numerical investigation of particle motion in viscoelastic fluids studying different
shapes of particles, effects of confinement as well as inertia. Feng & Joseph (1996)
found that spheres migrate outward in a torsional flow between two discs under
the action of normal stresses, whereas rods migrate inward or outward depending
on their motion along Jeffrey’s orbits or aligned with streamlines. They analysed
the forces in a second-order fluid to show that a particle experiences compressive
forces due to normal stresses that tend to align long bodies with the flow direction,
move cylinders towards wall and aggregate them (Joseph & Feng 1996). Huang
et al. (1997) simulated two-dimensional motion of rigid cylinders in an Oldroyd-B
fluid (along with Carreau–Bird shear thinning) to find that the migration and the
eventual equilibrium position depend on inertia, viscoelasticity, shear thinning and the
blockage ratio (effects of both bounding walls). At low Reynolds numbers, viscoelastic
normal stresses drive particles towards one of the walls. Shear thinning increases
the shear rate in regions of constant shear stress, and therefore normal stresses
increase enhancing the effects. More recently, finite-element simulation showed that
rigid spheres in a shear flow of Giesekus liquid migrate to the closest wall in both two
and three dimensions (D’Avino et al. 2010a,b). Such wall-ward migration was also
experimentally observed in oscillatory Couette flows (Lormand & Phillips 2004) at
low frequencies. Increasing frequency of oscillation however introduces more complex
behaviour.

In contrast to rigid particles, there has been no numerical simulation of viscoelastic
effects on drop migration. The only analysis of this phenomenon is the small
deformation perturbative study using a second-order fluid by Chan & Leal (1979),
where, as we mentioned above, the authors noted the inadequacy of the model. It
predicted that both drop and matrix viscoelasticity promotes migration away from
walls in contrast to other studies as well as the numerical results to be presented below.
They also did not see much difference in response between the two cases (viscoelastic
drop or matrix phase). This also contrasts with recent experimental and numerical
findings about drop response in unbounded shear (Aggarwal & Sarkar 2007, 2008b).
Drop deformation itself induces migration away from the wall in a Newtonian medium.
From the experimental and numerical literature for rigid particles, one would expect
viscoelastic effects to compete against it. However, viscoelastic effects are subtle, and
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the intuition about them is severely limited. For instance, there has been disagreement
in the literature even for simple questions such as whether viscoelasticity increases
or decreases drop deformation in shear (Tavgac 1972; Flumerfelt 1972; Elmendorp &
Maalcke 1985). Numerical simulation (Yue et al. 2005; Aggarwal & Sarkar 2008a)
recently resolved this issue by demonstrating that the response of a sheared viscous
drop in a viscoelastic matrix is non-monotonic. The detailed simulation could explain
the reason behind the non-monotonicity (Aggarwal & Sarkar 2008a): increasing
viscoelasticity decreases drop inclination leading it away from the extensional axis
at 45◦ causing decreased deformation, but further increase of viscoelasticity gives rise
to a strong extensional flow at drop tips that eventually increases deformation. Note
that the perturbative study mentioned above (Chan & Leal 1979) assumed that the
drop remains aligned with the extensional axis of the shear flow at 45◦. We will see
below that the deviation of the inclination from this angle due to viscoelasticity plays
an interesting role in the migration. We would also see here that the effect of matrix
viscoelasticity on drop migration is a result of subtle competition between two effects
which a posteriori justifies an attempt at a careful numerical and theoretical analysis
presented here.

In order to understand the complex phenomenon of viscoelastic effects on migration,
here we choose the simplest realizable problem that involves migration of a deforming
drop in presence of viscoelasticity: a three-dimensional simulation of a viscous drop
in a shear flow near a wall in a viscoelastic medium. We use a front-tracking finite
difference method (Tryggvason et al. 2001) that has been used in our lab for a
number of viscous (Sarkar & Schowalter 2001; Li & Sarkar 2005a,b,c, 2006; Olapade,
Singh & Sarkar 2009; Singh & Sarkar 2011) and viscoelastic (Sarkar & Schowalter
2000; Aggarwal & Sarkar 2007, 2008a,b; Mukherjee & Sarkar 2009, 2010, 2011)
drop problems. Our previous studies used Oldroyd-B model for viscoelasticity. Here
we choose a modified version of the Chilcott–Rallison (CR)-type finitely extensible
nonlinear elastic (FENE) model (Chilcott & Rallison 1988). Unlike the Oldroyd-B
model, this model has a finite extensional viscosity and a constant shear viscosity.
It models Boger fluids and has been used in many viscoelastic studies (Szabo,
Rallison & Hinch 1997; Ramaswamy & Leal 1999; Dou & Phan-Thien 2003; Kim
et al. 2005). The modified FENE-CR, also known as FENE-MCR, gives identical
responses in simple steady shear as FENE-CR, the only difference between the two
models arising in very strong convective flows (Matos, Alves & Oliveira 2009). FENE-
MCR has also been widely used in the literature, e.g. for viscoelastic flows through
axisymmetric contractions (Coates, Armstrong & Brown 1992), viscoelastic flows at
a T-junction (Matos et al. 2009), bifurcation phenomena in viscoelastic flows (Rocha,
Poole & Oliveira 2007), viscoelastic flows past cylinders (Oliveira & Miranda 2005),
two-dimensional vortex dynamics in a cylinder wake (Sahin & Owens 2004; Moyers-
Gonzalez & Frigaard 2010) and studies of the plane Couette–Poiseuille flow (Moyers-
Gonzalez & Frigaard 2010). In the following, mathematical formulation and numerical
implementation are described in § 2. In § 3 we describe the problem set-up and method
convergence. In § 4 we discuss numerical results. We also develop a theory for drop
migration, and compare it with numerical results and provide an algebraic expression
of migration. Section 5 concludes the work.

2. Mathematical formulation and numerical implementation
We have previously described the mathematical formulation underlying our

computational tool for simulating drops with viscoelastic constitutive equations
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(Aggarwal & Sarkar 2007, 2008a; Mukherjee & Sarkar 2009, 2010, 2011). The
(droplet-matrix) system is governed by the incompressible momentum conservation
equations:

∂(ρu)
∂t
+∇ · (ρuu)=∇ · τ −

∫
∂B

dxBκnΓ δ(x− xB), (2.1)

∇ ·u= 0 (2.2)

in the entire domain Ω . The total stress τ is decomposed into pressure, polymeric and
viscous parts:

τ =−pI + T p + T v, T v = µsD, (2.3)

where p is the pressure, µs is the solvent viscosity and D = (∇u) + (∇u)T is the
deformation rate tensor. The superscript ‘T’ represents the transpose. Here T p is the
extra stress (or viscoelastic stress) due to the presence of polymer. In (2.1) Γ is the
interfacial tension (constant), ∂B represents the surface of the drop consisting of points
xB, κ the local curvature, n the outward normal and δ(x− xB) is the three-dimensional
Dirac delta function. The FENE-CR constitutive equation in terms of the conformation
tensor A is given by

∂A
∂t
+ u ·∇A=∇u ·A+ A · (∇u)T − f

λ
(A− I) where f = L2

L2 − tr(A)
. (2.4)

The relation between the stress T p and conformation tensor A is

A=
(
λ

µpf

)
T p + I. (2.5)

One can obtain an equation for the extra stress T p:

∂T p

∂t
+ {u ·∇T p −∇u ·T p − T p ·∇uT

}+ fT p

[
∂

∂t

(
1
f

)
+ u ·∇

(
1
f

)]
+ f

λ
T p

= f

λ
µpD,

f =
L2 + λ

µp

(∑
Tp

ii

)
L2 − 3

. (2.6)

Here µp is the polymeric viscosity, λ is the relaxation time and L is the finite
extensibility. The FENE-CR model introduces finite extensibility L which limits the
maximum length of the end-to-end vector for the polymer molecule. In the limit
of L→∞ we obtain the Oldroyd-B equation. To obtain an explicit elastic viscous
splitting, we follow the finite analytic integration technique developed in our previous
work (Sarkar & Schowalter 2000); equation (2.6) can be expressed as

∂T p

∂t
+ f

λ
T p = K(t), (2.7)

where

K(t)= f

λ
µpD−

{
u ·∇T p −∇u ·T p − T p ·∇uT

}− fT p

[
∂

∂t

(
1
f

)
+ u ·∇

(
1
f

)]
.

(2.8)
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It is integrated over a time step tn to tn+1 to result in the following expressions

(T p)n+1 − (T p)ne−(f /λ)1t = e−(f /λ)t
n+1
∫ tn+1

tn
[K(t)]e(f /λ)t dt

= e−(f /λ)t
n+1
[
λ

f
e−(f /λ)tK(t)

]tn+1

tn

− e−(f /λ)t
n+1 λ

f

∫ tn+1

tn

[
∂K(t)
∂t

e−(f /λ)t
]

dt

≈ λ
f
[1− e−(f /λ)1t]Kn, (2.9)

where we have assumed Kn ≈ Kn+1. Note that it offers an automatic elastic viscous
stress splitting

(T p)
n+1 = µpDn + [(T p)

n − (µpD
)n]

e−(f /λ)1t + λ
f

[
1− e−(f /λ)1t

]
(K n − µpDn). (2.10)

The effects of the terms ∂(1/f )/∂t and u · ∇(1/f ) are neglected resulting in the
FENE-MCR equation:

(T p)
n+1 = µpDn + [(T p)

n − µpDn
]

e−(f /λ)1t − λ
f
[u ·∇T p −∇u ·T p − T p ·∇uT]n

+µpDn
[
1− e−(f /λ)1t

]
. (2.11)

Keeping those terms resulted in little difference. The drop is described by a
triangulated front distinct from the regular Cartesian grid used to solve the flow field;
the front is adaptively regridded to prevent excessive distortion of the front elements.
A multigrid method is used for the pressure Poisson equation, and an alternating
direction implicit (ADI) method is used for the viscous terms (µp + µs)D to alleviate
the diffusion restriction on the time step. The above algorithm therefore was used to
compute the non-Newtonian part of the stress TNN = T p − µpD. Other details can be
found in the previous papers (Sarkar & Schowalter 2000, 2001; Li & Sarkar 2006;
Aggarwal & Sarkar 2007).

3. Problem set-up and convergence
At t = 0, a spherical drop of radius a is placed in a computational domain. The size

of the domain is Lx = 10a, Ly = 10a and Lz = 5a. The upper plate (y direction domain
boundary) is impulsively started (in the x direction) with a velocity 2U, and the lower
plate is kept stationary creating a shear rate of γ̇ = 2U/Ly. The drop is positioned
in close proximity to the lower stationary wall and the initial distance (hi) is varied.
We use a and γ̇ −1 as the non-dimensionalizing length and time scales, respectively.
The dimensionless parameters are Reynolds number Re = ρma2γ̇ /µm capillary number
Ca = µmaγ̇ /Γ , Deborah number (or Wissenberg number) De = λγ̇ , viscosity ratio
λµ = µd/µm, density ratio and β = µpm/µm is the ratio of the polymeric to the total
matrix viscosity. The subscript d and m refer to the drop and the matrix phases.
The total viscosity of the matrix is given as µm = µsm + µpm, sum of the solvent
and polymeric viscosities. In all our simulations, viscosity and density ratios are kept
fixed at unity. We have chosen β = 0.5 and FENE-MCR limiting length L = 20
for all computations, unless otherwise mentioned, e.g. where we study the effects



324 S. Mukherjee and K. Sarkar

R
el

at
iv

e 
er

ro
r 

(%
)

N–2 (× 10–3)

N–2 (× 10–3)

D

N

0.26

0.27

0.28

0.29

0.30

0.31

60 70 80 90 100 110 120

0.022

0.024

0.026

0.028

60 70 80 90 100 110 120

5

10

15

0.1 0.2 0.3

R
el

at
iv

e 
er

ro
r 

(%
)

0

20

0.1 0.2 0.3
0

10

20

30

y

hi

z x

(a) (b)

(c)

FIGURE 1. (a) Qualitative representation of a migrating drop (hi is the initial drop-to-wall
distance). Grid convergence study of the drop deformation (b) and lateral migration velocity
(c) for Ca = 0.2, De = 0.75 and hi/a = 1.35. Here N is the number of grid points in the x
direction. Relative errors compared with the highest grid density are shown in the insets.

of these parameters. The explicit nature of the code restricts us (despite the ADI
implementation of the viscous terms) to a small non-zero Reynolds number of 0.03,
where inertial effects are negligible. Figure 1(a) shows a schematic of a drop migrating
in a shear flow away from a wall (drawn from actual simulation but the horizontal
distance is shortened to exaggerate the motion).

Convergence of the algorithm using the Oldroyd-B constitutive relation has been
established in our previous publications (Aggarwal & Sarkar 2007, 2008a; Mukherjee
& Sarkar 2009, 2010, 2011) on drop deformation. Here we investigate the grid
independence for the migration problem. Figure 1(b,c) plot the deformation and
lateral migration velocities of a Newtonian drop migrating in a viscoelastic media for
increasing discretization levels for Ca = 0.2, De = 0.75, L = 20. The grid resolution
(1x = 1y = 1z) is varied from a/5.6 (N = 56) to a/12.8 (N = 128) where a is the
drop radius. We note that the deformation and velocity do not vary much beyond
the discretization level of a/9.6. In the inset, the relative changes with respect to
the highest grid resolution at a particular time instant are plotted. At 1x = a/9.6,
error in the velocity is around 4.5 %, and in the interest of achieving a reasonable
computational time, we choose (96 × 96 × 48) as our grid resolution for all further
simulations.

4. Results
4.1. Newtonian lateral migration and comparison

As mentioned before, a viscous drop suspended in a viscous shear flow deforms,
changes its orientation angle and moves laterally away from a nearby wall. An initially
spherical drop becomes ellipsoidal thereby breaking the symmetry in its shape in the
presence of the wall. It experiences an extra drag and lift of purely viscous origin,
and starts migrating laterally away from the wall. The drop quickly reaches a steady
state where its motion does not depend on the initial position. For a Newtonian case,
we compare quasi-steady migration velocities from our simulations with those obtained
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FIGURE 2. (a) Comparison of simulated lateral migration velocity with Chan and Leal (CL)
and Uijttewaaal et al. (UNH). (b) Comparison of the deformation parameter with Shapira
and Haber (SH). In the formula of Shapira and Haber, DTaylor has been replaced by the
deformation parameter of unbounded cases from our simulations.

from a perturbative theory (Chan & Leal 1979) and a BEM simulation (Uijttewaal
et al. 1993) in figure 2(a). The perturbation expression for lateral migration is

Ulat

aγ̇
= DTaylor

(
3(54λ2 + 97λ+ 54)

280(1+ λ)2
)(a

h

)2
. (4.1)

We note that the simulated migration velocity is in good agreement with the theory
for low values of capillary numbers, where the perturbation analysis is valid. As Ca is
increased (Ca = 0.2), our simulation matches with BEM simulation (Uijttewaal et al.
1993) better. In conformity with the analytical result (4.1), our simulation shows a
linear variation of migration velocity with the inverse of square of the distance from
the wall. In figure 2(b) we compare deformation in presence of a nearby wall with the
theoretical expression of Shapira & Haber (1990):

DSH = DTaylor

(
1+ 3

8

(a

h

)3
[

1+ 2.5λµ
1+ λµ

])
. (4.2)

We replaced the Taylor deformation in (4.2) by the deformation simulated here to
achieve a slightly better match. After thus validating our simulation tool against
previous results, we introduce viscoelasticity in the matrix and investigate its effects in
detail.

4.2. Effects of Deborah number, polymeric viscosity and extensibility
A viscoelastic matrix slows down the migration process. In this section, we choose a
moderate capillary number of Ca= 0.2. Figure 3(a) plots lateral migration velocity for
four initial drop positions for a Newtonian and a non-Newtonian case. We note that
the viscoelasticity in the matrix reduces the migration velocity considerably, even for a
small De number of 0.5. Note that after the initial transients the reduced quasi-steady
drop velocity in a viscoelastic matrix depends only on its current distance from the
wall and all of them collapse on a single curve irrespective of the initial starting
position, just like in a Newtonian case. In the inset we show that the quasi-steady
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FIGURE 3. (a) Evolution of lateral migration velocity versus the distance of the drop from
the wall for varying De and initial drop height (hi/a) for Ca = 0.2. The inset shows quasi-
steady velocities varying linearly with the inverse of the square of the instantaneous wall
distance for different De values. (b) Quasi-steady lateral migration velocities versus De for
varying drop distances from the wall and Ca = 0.2. The inset shows the same migration
velocity normalized by their corresponding Newtonian values all collapsing on a single curve.
(c) Quasi-steady viscoelastic net force on the drop versus the distance of the drop from the
wall for varying De, Ca= 0.2 and three different initial drop heights.

velocity scales with the inverse of the square of the distance of the drop centre from
the wall for different De. A linear fit for each De is also shown. Note that the
independence of the migration velocity on the initial position is in conformity with the
Stokes flow results (Leal 1979). Recent finite-element simulation also showed that the
migration of a rigid sphere in a viscoelastic matrix and the long-time dynamics are
independent of the initial position (D’Avino et al. 2010a). In the following, we will
concentrate on the quasi-steady dynamics and investigate transient effects and breakup
in §§ 4.6 and 4.7, respectively.

In figure 3(b), we plot the quasi-steady lateral migration velocity as a function
of De for several instantaneous wall to drop distances for Ca = 0.2. For larger wall
distances, the curves are approximately linear with slight deviation only when the drop
is close to the wall or for larger De values (De > 0.75). This variation is due to the
formation of stretched drop tip close to the wall. It happens only at a very small
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drop-to-wall distance due to the high viscoelastic stresses in the locally extensional
flow. We discuss this phenomenon below. The inset of figure 3(b) shows that when the
velocity is normalized by its Newtonian value, all of them collapse on a single linear
curve. The effect of viscoelasticity on the slip velocity is extremely small at Ca= 0.2,
and therefore, will be investigated at other capillary numbers in the next subsection.

In figure 3(c), we plot the vertical component of the viscoelastic force (
∫
∂B(n ·T p) da,

where n is the normal to the drop surface ∂B) on the drop versus the instantaneous
distance from the wall, after the quasi-steady state has been reached for three different
initial heights and Deborah numbers. Again we note that the force curve for a
particular Deborah number becomes independent of the initial drop height and depends
only on the instantaneous position. We also note that the nominally viscoelastic
force is positive for a Newtonian case (e→ 0) where the viscoelastic stress is µpD.
With a finite non-zero Deborah number, it becomes eventually negative as the part
λ
{
u ·∇T p −∇u ·T p − T p ·∇uT

}
in (2.6) dominates µpD indicating a retarding effect

of viscoelasticity on the migration. As noted before, the shape asymmetry of the
deformed drop relative to the wall gives rise to the migration away from the wall.

In figure 4(a), we plot deformation for varying De at Ca = 0.2 for two different
initial drop heights (hi/a = 1.2 and hi/a = 1.5). Similar to the migration velocity,
in the quasi-steady state, deformation also becomes independent of the initial drop
position. With increasing De, the drop deformation first decreases for De = 0.1 and
0.5 and then increases beyond that. This can be seen clearly in figure 4(b) where
quasi-steady deformations normalized by the respective Newtonian values, are plotted
as a function of De, at several drop heights for three different initial drop heights
(hi/a = 1.2, 1.35, 1.5). We notice that the deformation parameters are increasing
beyond De = 0.5. This non-monotonicity is due to the presence of two competing
effects, the decreasing orientation angle and increasing viscoelastic stresses at the
tip, as was shown previously by our group (Aggarwal & Sarkar 2008a). As De
is increased, initially the deformation decreases due to decreasing inclination angle,
resulting in the drop moving away from the extensional axis, but with further increase
in De the deformation increases because of the increasing extensional viscoelastic
stresses at the tips which become dominant for higher De values. The curves also
collapse on each other up to the Deborah number where non-monotonicity appears. In
figure 4(c), we plot inclination angle versus (a/h)2 for two initial drop heights and
four Deborah numbers. Note that Uijttewaal et al. (1993) provided such a plot for the
viscous system; perturbative theories indicate an (a/h)2 dependence for deformation
and migration velocities, but not for the inclination angle. Here, we see a slight
decrease with (a/h)2; interaction with the wall tend to align the drop in the flow
direction. The inclination angle in the quasi-steady state, like velocity and deformation,
does not depend on the initial drop height, and curves for a particular De are on top
of each other. As we saw for the unbounded drop case, the drop inclination angle
decreases linearly with De (Aggarwal & Sarkar 2008a). Upon normalizing the angle
with values at De = 0, we note that the normalized angles all collapse on one straight
line with De for three different instantaneous drop heights (inset of figure 4c). In
figure 4(d), we show the drop shape and the streamlines around it. Note that the
streamlines above the drop are more curved and therefore viscoelastic tensile stresses
are larger compared with those below the drop resulting in a net downward force on
the drop that retards migration. The viscoelastic normal stress due to curvature of the
surrounding streamlines is the primary reason of hindered migration. The same effect
was also noted by Joseph and coworkers (Huang et al. 1997) for a rigid sphere in
shear flow migrating towards a wall. There is a second effect which stems from drop
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FIGURE 4. (Colour online) (a) Quasi-steady deformation versus the inverse of the cube of
the drop-to-wall distance for varying De for Ca = 0.2 and two different initial heights. (b)
Deformation normalized by their corresponding Newtonian values versus De for hi/a = 1.2,
1.35 and 1.5 at three different instantaneous heights for the same capillary number. (c)
Inclination angle versus the inverse of the square of the drop-to-wall distance for various De,
Ca = 0.2, hi/a = 1.2 and 1.5. The inset shows the normalized angle with varying Deborah
number at three different instantaneous heights. (d) Streamlines around a drop for h/a = 1.2
for De = 0.75 and Ca = 0.05. The coordinate system is translating with the drop with its
velocity in the x direction.

deformation absent in rigid sphere case: more specifically related to the decreasing
angle of inclination (increasing drop alignment with the flow) of the deformed drop
that tends to increase migration. We investigate this phenomenon in detail in § 4.4
below.

In figure 5, we investigate viscous and viscoelastic forces per unit volume in
the vertical direction along the surface in the normal direction for varying De and
Ca = 0.2 as a function of angular position in the midplane z = Lz/2 at a non-
dimensional height of 1.5. Here φ1 = 0 corresponds to the x-axis; drop tips are
shown in each figure. These quantities are interpolated from the three-dimensional
grid to the front grid using the same interpolating function used in the front tracking
implementation. Note that these are the forces per unit volume ∇ · τ due to viscous
and polymeric contribution that directly appear in the momentum equation (2.1). In the
limit of De→ 0 the viscoelastic stress is µpD. In figure 5(a), viscous vertical forces
(Fvis

y = ŷ·(∇·µsD)) are plotted. We note that as viscoelasticity is increased, the viscous
forces around the drop increase except in a very small region around φ1 ≈ −0.6π
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FIGURE 5. Viscous forces Fvis
y = ŷ · (∇ ·µsD) (a) and viscoelastic forces Fp

y = ŷ · (∇ · TP)

(b) in the vertical direction along the circumference of the drop in the central z = Lz/2 plane
plotted as a function of the angular position (φ1 = 0 coincides with x-axis) for different De at
Ca= 0.2 and h/a= 1.5.

(peak region of the curves). This indicates that the change due to viscoelasticity in
viscous stress promotes lateral migration of the drop away from the wall; in § 4.4, this
observation will be substantiated by a semi-analytical theory. In figure 5(b) we plot
viscoelastic vertical forces Fp

y along the circumference of the drop. We note that in the
region approximately between −0.7π and 0.3π the vertical force is positive, indicating
force pushing away from the wall (φ1 ≈ −0.7π refers to the location where the drop
surface is closest to the wall). However, outside this region Fp

y is negative and pulls
the drop towards the wall. We note that as De is increased, Fp

y sharply becomes more
negative in the region where the matrix fluid is squeezed between the drop and the
wall, hindering migration away from the wall. Although the tip away from the wall
experiences larger push as De is increased, that closer to the wall has much stronger
pull towards it. Cantat & Misbah (1999) plotted the total vertical hydrodynamics force
distribution under a vesicle migrating in a shear flow of viscous liquid. Although the
situation with the vesicle there differs from the drop here, in having extra bending
and adhesion forces resulting in a very different shape, and consequently the maximum
values at locations different from the drop, a qualitative similarity in the nature of the
forces can be noted. These vertical forces are directly responsible for the decreased
lateral migration of a drop in a viscoelastic matrix. Viscoelastic normal traction force
along the circumference (not shown here for brevity) is extensional at the tip and
compressive at the equator; both are responsible for the deformation of the drop,
although forces at the tip are much more dominant. Also the force has higher values
at the tip closer to the wall leading to excess deformation. It increases dramatically,
particularly at the lower tip, as De is increased.

Next we study the effects of variation of the amount of polymeric viscosity by
varying the parameter β. In figure 6(a), we plot the migration velocity for varying De
for several β values, respectively. When it is plotted against βDe (in the inset), we find
a linear scaling. We briefly study the effects of varying the maximum polymer length
(L, also known as the maximum extensibility) by plotting deformation, inclination
and the lateral migration velocity normalized by the respective Newtonian values in
figure 6(b) for Ca = 0.2, De = 0.75, h/a = 1.5. We note that as it increased, velocity
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FIGURE 6. (a) Migration velocity plotted for varying De for different β values at Ca = 0.2
and h/a = 1.5. The inset shows the same scaling with βDe. (b) Lateral migration velocities,
inclination and deformation plotted for varying L2 values for Ca = 0.2, De = 0.75 and
h/a = 1.5. It also shows drop migrating away from the wall for Ca = 0.2, De = 1.0 L = 20
and hi/a= 1.2.

and inclination decrease dramatically initially, followed by a saturation effect for larger
values of L. The deformation initially decreases for extremely small values of L and
then it increases as L is increased. The non-monotonicity of drop deformation with
increasing β or De in a viscoelastic matrix is mimicked by increasing L. The same
figure also shows snapshots of a deforming drop with a pointed tip closer to the wall.
Drops in close proximity to the wall form pointed tips if the viscoelasticity in the
suspending fluid is sufficiently high as was also found experimentally by Tretheway
& Leal (2001). The stagnation points at the tips of a drop cause polymer chains to
be extended, resulting in the appearance of pointed ends. The enhanced curvature at
the tips also gives rise to very high local strain rate there pulling the drop interface
outward. During simulation, the tip remains extended for some time before it relaxes
as the drop moves away from the wall. In strong extensional flows, such a tip or a
cusp can form, as is seen for a rising bubble or a falling drop in a non-Newtonian
media (Philippoff 1937; Pillapakkam et al. 2007).

4.3. Effects of capillary number on quasi-steady dynamics
Figure 7(a) plots the migration velocity against Ca for different De values and shows
that similar to the Newtonian case, the migration velocity here also increases linearly
with increasing Ca. Increasing Ca gives rise to a linear increase in deformation for
small deformation. Increased deformation gives rise to increasing migration velocity
(see (4.1)). The curves for each De is extrapolated to Ca = 0. The migration velocity
(intercept at the ordinate axis) at Ca = 0 plotted in the inset shows a linear variation
with De (The Newtonian case (De= 0) shows a small non-zero migration velocity due
to the finite amount of inertia in the simulation). The result indicates a viscoelastic
effect even in absence of deformation (see the second term independent of Ca in (4.24)
below).

As we noted above, there are two distinct but competing effects on migration
due to matrix viscoelasticity: the reduced inclination angle and the larger viscoelastic
stresses on the curved streamlines above the drop. We will see below in § 4.4 that the
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FIGURE 7. (a) Lateral migration velocity as a function of Ca for varying De at h/a = 1.5.
The inset shows the intercept of the curves on the y-axis (when Ca = 0). (b) Variation of
lateral velocities with De when the velocities are normalized by the values of the respective
Newtonian cases. (c) Net vertical viscoelastic force on the drop plotted versus Ca for varying
De at h/a= 1.5.

reduced inclination angle increases the lift on the drop while the viscoelastic stresses
reduce it. We plot the migration velocity normalized by its Newtonian velocity versus
De for various Ca in figure 7(b). It shows that the reduction is larger for smaller
capillary numbers. Below (4.22) shows that this results from the normalization with
the Newtonian velocity. We also plot the net vertical viscoelastic force exerted by
the matrix on the drop as a function of Ca (figure 7c) for various De and for the
same instantaneous drop height as in figure 7(a). As expected, the higher the Deborah
number, the higher the magnitude of the inhibiting (negative) viscoelastic force. With
decreasing Ca, the magnitude of the negative (retarding) viscoelastic force increases.
Also note that for lower Ca, the curves for different De values are farther apart and
as Ca increases the curves comes closer to each other, indicating that the effect of
viscoelasticity is higher for lower Ca. The inclination angle shows a linear decrease
with increasing capillary number (not shown here for the reason of brevity).

A moving drop experiences a drag, and as a result moves with a velocity different
from that of the imposed flow. The difference is called the slip velocity. Similar to
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the migration velocity, it also decreases linearly with the inverse square of drop-to-wall
separation (not shown here for brevity). In figure 8, we plot the dimensionless slip
velocity (Uslip/aγ̇ = (Ux−hγ̇ )/aγ̇ ) versus De at h/a= 1.5 for four different Ca values.
The slip velocity is negative: the drop lags behind the flow. Also the trend is non-
monotonic. As De is increased, the slip velocity increases slightly, reaches a maximum
and then decreases. In the inset, the deformation (normalized with the respective
Newtonian value) plotted versus De shows a similar trend of non-monotonicity. We
conclude that larger deformation results in larger magnitude of the slip velocity.

4.4. Theory of migration
In this section, we offer an analytical explanation of the various relations of the quasi-
steady migration velocity with the flow parameters, specifically, capillary number,
Deborah number and distance from the wall. Note that the only analytical theory
available for viscoelastic migration of a drop is due to Chan & Leal (1979),
who performed a rigourous perturbative analysis of the moving boundary problem,
that is algebraically demanding, and as detailed in the introduction, predicts that
viscoelasticity increases migration velocity in contrast to the results shown here and
other computations. Here, we take an alternative route to express the solution in terms
of integral formulation in terms of Stokes Green’s function to find out the first-order
variation. Note that in the limit of zero Reynolds number the governing equation can
be written as

−∇p̃+ µd∇2ũ= 0, (4.3a)
−∇p+ µsm∇2u=−∇ ·T p or −∇p+ µm∇2u=−∇ · (T p − µpmD)=−∇ ·TNN,

(4.3b)

inside and outside the drop. Variables with a tilde represent field variables inside the
drop. Here, we combine µpmD with the viscous part and subtract it from the extra
stress. Note that this formulation (4.3) is equivalent to the single-fluid formulation
(2.1) adopted earlier for front tracking implementation in the Stokes limit. The
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redefined non-Newtonian stress TNN = T p − µpmD gives rise to a force term to the
Stokes equation and, therefore, the solution outside the drop can be written as

uj(x) = − 1
8πµm

∫
Ad+S∞

[Tvik(y)+ µpmDik(y)]nk(y)Gij(x, y) dA(y)

+ 1
8π

∫
Ad+S∞

ui(y)Mijk(x, y)nk(y) dA(y)

+ 1
8πµm

∫
V
∂kT

NN
ik (y)Gij(x, y) dA(y), (4.4a)

Gij(x, y)= GFS
ij (x, y)+ Gw

ij (x, y), Mijk(x, y)=MFS
ijk (x, y)+Mw

ijk(x, y). (4.4b)

Here V is the volume described by the boundary at infinity S∞ and the wall and
the drop surface Ad. We use T v to denote the viscous stress that only includes the
contribution due to solvent viscosity µsm (2.3). We use a proper Green’s function
that adds a contribution Gw

ij (x, y) to the free space Green’s function GFS
ij (x, y) so that

Gij(x, y)= 0 on the wall (Blake 1971). Here Mijk(x, y) is the stress due to this Green’s
function. This special property of the Green’s function along with the no-slip condition
eliminates the surface integral over the wall. An integration by parts on the volume
integral term gives rise to

uj(x)=− 1
8πµm

∫
Ad+S∞

fi(y)Gij(x, y) dA(y)+ 1
8π

∫
Ad+S∞

ui(y)Mijk(x, y)nk(y) dA(y)

− 1
8πµm

∫
V

TNN
ik (y)∂kGij(x, y) dV(y). (4.5)

Here fi = (Tvij + µpmDij + TNN
ij )nj is the total traction at the surface. However, we

also know that in the absence of the drop the plane shear indicated as u∞i = γ̇ δi1x2

(direction 2 is in the gradient direction y) is a solution of both viscous as well as
viscoelastic momentum equation:

∇ ·T v(∞) =∇ ·TNN(∞) = 0. (4.6)

Therefore, one can write a similar equation such as (4.5) for u∞i in the complete
domain without the drop:

u∞j (x)=−
1

8πµm

∫
S∞

f∞i (y)Gij(x, y) dA(y)+ 1
8π

∫
S∞

u∞i (y)Mijk(x, y)nk(y) dA(y). (4.7)

Note the absence of the volume source term because of (4.6). We write the total
velocity as a sum of the imposed shear u∞i and the disturbance velocity u′i due to the
presence of the drop:

ui = u∞i + u′i. (4.8)

Using (4.7) and noting that the disturbance velocity due to the drop vanishes far away,
one obtains the velocity field in (4.5) as

uj(x)= u∞j −
1

8πµm

∫
Ad

fi(y)Gij(x, y) dA(y)+ 1
8π

∫
Ad

ui(y)Mijk(x, y)nk(y) dA(y)

− 1
8πµm

∫
V

TNN
ik (y)∂kGij(x, y) dV(y). (4.9)
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Using a Green’s function formulation for the velocity field ũj inside the drop (normal
are opposite to the outside field) but evaluating at a point x outside the drop we obtain

0= 1
8πµd

∫
Ad

f̃i(y)Gij(x, y) dA(y)− 1
8π

∫
Ad

ũi(y)Mijk(x, y)nk(y) dA(y). (4.10)

Multiplying (4.10) with µd/µm and adding to (4.9), one obtains

uj(x)= u∞j −
1

8πµm

∫
Ad

1fi(y)Gij(x, y) dA(y)+ (1− λµ)
8π

∫
Ad

ui(y)Mijk(x, y)nk(y) dA(y)

− 1
8πµm

∫
V

TNN
ik (y)∂kGij(x, y) dV(y), (4.11)

using velocity continuity and traction condition at the drop interface

ui = ũi, fi − f̃i ,1f = Γ (∇ ·n)n on Ad. (4.12)

We find an expression appropriate for the far-field by performing a Taylor series
around the centre of the drop yc:

Gij(x, y)= Gij(x, yc)+ ∂Gij(x, yc)

∂yck
(yk − yck)+ O

(
a∣∣y− yc
∣∣
)3

, (4.13a)

Mijk(x, y)=Mijk(x, yc)+ O

(
a∣∣y− yc
∣∣
)3

. (4.13b)

We note that although the source term in (4.4) involves an integral of the viscoelastic
stresses ∂kTNN

ik = ∂kT
NN(∞)
ik + ∂kTNN′

ik in the whole domain, only ∂kTNN′
ik due to the

disturbance field remains (note ∂kT
NN(∞)
ik = 0), which is dominant only in a region near

the drop. We can therefore use a Taylor series expression even for this term, and
obtain

uj(x)= u∞j (x)−
1

8πµm
Gij(x, yc)

∫
Ad

1fi(y) dA(y)

− 1
8πµm

∂Gij(x, yc)

∂yck

[∫
Ad

{1fi(y)(yk − yck)− µm

(
1− λµ

)
(uink + ukni)(y) dA(y)}

+
∫

V
TNN′

ik (y) dV(y)
]
, (4.14)

noting that
∫

Ad
uk(y)nk(y) dA(y) = 0 (this eliminates the pressure and the transpose

part in Mijk(x, yc)). For a force-free drop,
∫

Ad
1fj(y) dA(y) = 0. We obtain the stresslet

expression due to the drop

uj(x)= u∞j (x)−
1

8πµm

∂Gij(x, yc)

∂yck

×
{
Γ

∫
Ad

(δik − nink) dA(y)− µm

(
1− λµ

) ∫
Ad

(uink + ukni)(y) dA(y)

+
∫

V
TNN′

ik (y) dV(y)
}
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= u∞j (x)−
1

8πµm

∂Gij(x, yc)

∂yck

(
Sint′

ik + Svrat′
ik + SNN′

ik

)
= u∞j (x)−

1
8πµm

∂Gij(x, yc)

∂yck

(
Sint

ik + Svrat
ik + SNN

ik

)
, (4.15)

where
Sint′

ik = Γ
∫
(δik − nink) dA(y), (4.16a)

Svrat′
ik =−µm

(
1− λµ

) ∫
Ad

(uink + ukni)(y) dA(y), (4.16b)

SNN′
ik =

∫
V

TNN′
ik (y) dV(y), (4.16c)

are the contributions to the stresslet due to the interfacial tension, viscosity ratio and
the non-Newtonian effects. These terms without primes in the last expression in (4.15)
represent their traceless forms. Note that due to incompressibility, ∂Gik(x, yc)/∂yck = 0.
Therefore, the trace of the stresslets does not contribute. In arriving at (4.15), we used
an identity due to Rosenkilde (1967) to transform the surface integral term involving
curvature due to interfacial tension for Sint

ik to the interface tensor
∫
(δik − nink) dA(y)

first so defined by Batchelor (1970). The first two terms are responsible for migration
as well as effective emulsion rheology (Li & Sarkar 2005b; Singh & Sarkar 2011) in
a Newtonian system. Note that this term is entirely geometric determined by the drop
shape.

The drop migration, as noted by Smart & Leighton (1991) for a viscous system, is
caused by the velocity field due to the image of the stresslet due to the wall, i.e. the
contribution due to Gw

ij (x, y) in relation (4.4) towards ∂Gij(x, yc)/∂yck in (4.15). Smart
and Leighton obtained that near a rigid wall with normal n, expression (4.15) gives
rise to the following drift velocity (contribution due to the image):

udrift
j nj =− 1

8πµm

(
9

8h2

)(
Sint

ik + Svrat
ik + SNN

ik

)
nink,

(a

h

)2� 1. (4.17)

For the case here with the wall at x2 = y= 0, we obtain the migration velocity

Ulat =− 1
8πµm

(
9

8h2

)(
Sint

22 + Svrat
22 + SNN

22

)
. (4.18)

The second term is absent for a viscosity matched system (λµ = 1). For such a case,
figure 9(a) examines the validity of the expression (4.18) for a Newtonian system
where only Sint

22 survives. The simulated migration velocity is compared with that
obtained from (4.18) using Sint

22 computed from the simulated drop shape for several
Ca values. The comparison is similar to what was obtained with the formula due to
Chan & Leal (1979); it is good for drops away from the wall. We therefore choose
a distance of h = 2.5a where Newtonian comparison works well for examining the
effects of the viscoelasticity.

We note that in a sheared FENE-CR liquid, the imposed shear obtains only one
component of the normal non-Newtonian stress (Oliveira 2003)

TNN(∞)
11 = (µp/2λ)

[
−L2 +

√
L4 + 8λ2γ̇ 2(L2 − 3)

]
. (4.19)

We subtract it from the total normal non-Newtonian stress TNN
11 to obtain the normal

stress due to the perturbation field. Also note that accounting for the trace, the non-
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FIGURE 9. (a) Lateral migration velocity from the simulations (symbols) and from the
stresslet theory (lines) are shown for Newtonian cases for three sets of Ca. (b) Interfacial
part of stresslet is plotted as a function of De for different Ca values at h/a= 2.5. Inset shows
the inclination angle for same parameters. (c) Migration velocity according to the stresslet
theory (lines) are compared with those from the simulations (symbols) for varying De and
three Ca values. Inset shows the non-Newtonian part of the stresslet.

Newtonian stresslet contribution becomes

SNN
22 =

∫
V

(
TNN′

22 −
TNN′

22 + TNN′
11 + TNN′

33

3

)
dV =

∫
V

(
NNN′

1 − NNN′
2

3

)
dV. (4.20)

Ma & Graham (2005) also found a linear relationship between the shear-induced
migration velocity near a wall in a dilute polymer solution and the (N1 − N2) of the
solution. The system of dilute polymer solution that was simulated using a bead-spring
dumbbell model for polymer chains is different, yet bears similarity: the beads joined
by the spring experiences equal but opposite forces giving rise to a stresslet. The
authors provided a theory that clearly demonstrated that the polymer depletion layer
near a wall is primarily caused by the inter-molecular hydrodynamic interactions.

We have noted in previous subsections that increasing viscoelasticity decreases the
inclination angle aligning the drop with the flow (figure 3b), while the drop migration
decreases (figure 4c) both linearly with viscoelasticity parameter βDe. Evidently,
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decreasing the inclination angle affects the geometric term Sint
22 . One would be inclined

to think that decreasing the angle restores the symmetry of the system containing
the drop in vicinity of the wall and therefore the migration velocity induced by the
geometric stresslet Sint

22 would decrease. However, figure 9(b) shows that Sint
22 increases

linearly with De for several Ca, at h = 2.5a, indicating that it tends to increase the
migration velocity, while, counter to one’s intuition, the inclination angle (shown in
the inset) linearly decreases. In fact, they are closely related; empirically we find from
simulation

φ = π/4− 1.134 [Ca+ 0.37(βDe)− 0.375(CaβDe)] (4.21a)
−Sint

22 = 0.114 [Ca+ 0.34(βDe)− 0.875(CaβDe)] . (4.21b)

The second term involving βDe in −Sint
22 increases migration velocity. But it is

compensated by the non-Newtonian stresslet contribution −SNN
22 . Shown in the inset of

figure 9(c) for the same parameters as in figure 9(b), −SNN
22 computed using simulated

viscoelastic stresses decreases with De as

−SNN
22 ≈−0.054βDe+ 0.048(βDe)2. (4.22)

Note that curves for different Ca nearly coincides indicating very little effect of
capillary number for SNN

22 . In figure 9(c), simulated migration velocity shows good
match with those from the theoretical expression (4.18) (stresslets are computed using
shapes and viscoelastic stresses from simulation) for moderate values of De. Note
that the first term in (4.22), which decreases migration velocity with increasing βDe,
explains the relatively pronounced effect of viscoelasticity seen for smaller capillary
number when normalized with Newtonian velocity (figure 7b). In view of the above,
we further reiterate that the effects of matrix viscoelasticity on drop migration is a
result of two competing effects: decreased inclination angle (increased alignment with
the flow) due to viscoelasticity tries to increase lateral migration, but the viscoelastic
normal stresses overcomes it resulting in a hindered migration.

4.5. An expression for the quasi-steady migration velocity
We develop a correlation for the lateral migration in a viscoelastic medium based on
our observation and the analysis of the stresslet sketched in the previous subsection.
We noticed that Ulat/aγ̇ decreases linearly with βDe (figure 6a) suggesting Ulat ∼
Ulat(De=0)(1− α(βDe)), where α is solely a function of Ca. The analytical relation (4.1)
due to Chan and Leal and the relation D ∼ Ca indicate that Ulat(De=0) ∼ Ca(a/h)2.
Therefore, Ulat ∼ (a/h)2Ca(1 − α(βDe)). We also note that for Ca = 0, inset of
figure 7(a) indicates a contribution linear with viscoelasticity ∼(βDe) independent
of Ca. Furthermore the stresslet terms (4.21b) and (4.22) also insinuate such a term.
Therefore α ∼ κ1 + κ2/Ca. Using the simulated data we obtain

Ulat

aγ̇
= 0.48

(a

h

)2
Ca

(
1− 0.665βDe− 0.1055

βDe

Ca

)
. (4.23)

Note that the slope 0.48 is lower than the values 0.6 obtained by Chan & Leal
(1979) and 0.583 obtained by Smart & Leighton (1991) consistent with the figure 2(a),
where the migration velocity obtained by Chan and Leal overpredicts the simulated
migration velocity. On the other hand, from the curves obtained using BEM simulation
of Uijttewaal et al. (1993), we estimate a value in the range 0.44–0.49. Imaeda
(2000) used a different perturbative method (using Green’s function formulation and
expanding the interface shape over spherical harmonics) to obtain a value of 0.41.
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FIGURE 10. Empirical expression (4.24) based on the simulation is plotted (lines) with the
simulation data (symbols). Change in lateral migration velocity with varying (a) De for
various β and (b) capillary number for various De at h/a= 1.5.

Note that the value here is close to that obtained using BEM solution, as was also
the case in figure 2(a). Owing to the small but finite inertia effects in our simulation,
it is more appropriate to compare the change in migration velocity due to matrix
viscoelasticity

1Ulat

aγ̇
≡ Ulat − Ulat(De=0)

aγ̇
=−0.48

(a

h

)2
(0.665(CaβDe)+ 0.1055(βDe)). (4.24)

Figure 10(a) plots this relation against De for five sets of β values along with the
simulated data, while figure 10(b) shows variation with Ca for various De values. Both
figures show good match for low to moderate values of Deborah number. For higher
values of βDe, there is a difference because of higher-order contributions of the order
(βDe)2.

4.6. Transient effects
Above, we investigated migration when the drop reaches a quasi-steady dynamics.
The migrating drop however deforms from its initial shape through a transient phase.
Viscoelasticity adds to the transients because the viscoelastic stresses unlike viscous
stresses take finite time to grow. Figure 11(a) plots the migration velocity for De = 0
and 0.75 for two different initial heights and Ca = 0.2. As expected, the initial rise in
velocity is higher for a drop initially closer to the wall due to enhanced wall-induced
asymmetry. By plotting the change in velocity normalized by the maximum change
(inset of figure 11a), one sees that the curves for different initial drop distance from
the wall collapse onto a single curve, indicating that the time scale of growth is a
function only of the Deborah number.

As noted above, once the moving drop becomes quasi-steady, the change in the slip
velocity due to viscoelasticity is minimal for Ca = 0.2. However, figure 11(b) shows
that for the same initial height, drop in the viscoelastic matrix (De= 0.75) experiences
an overshoot in slip velocity which crosses the Newtonian value for a period of time.
For the same Deborah number, a drop further away from the wall has a slightly
higher slip velocity. When the velocity change is normalized by the maximum change,
once again curves belonging to the same Deborah number collapse onto each other
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FIGURE 11. Transient evolution of (a) migration velocity, (b) slip velocity and (c) orientation
angle for Ca = 0.2 for two different initial heights. The insets show the change in same
quantities relative to the Newtonian case normalized by the corresponding maximum value
during the transient.

irrespective of the starting position (inset). The same is true for the inclination angle
as well (figure 11c), as one would expect from the close relationship between the
inclination and the viscoelastic effects on drop motion.

4.7. Large deformation and breakup
So far, we have studied cases where deformation is relatively moderate (Ca 6 0.2) and
the drop remains bounded. For these cases, the drop eventually reaches a quasi-steady
state independent of the history and the initial drop–wall separation, and only depends
on the instantaneous separation from the wall. More specifically, the quasi-steady
lateral velocity varies linear with (a/h)2. In this section, we very briefly investigate
cases where the drop experiences large deformation. In figure 12, we investigate the
Newtonian case (De = 0) by plotting the lateral velocity against h/a for Ca = 0.4 and
three different initial drop heights. For such large Ca values and consequently large
deformation, the migration velocity does not become independent of the initial drop
height; a drop which starts closer to the wall has a larger maximum velocity. Initially,
the velocity rises rapidly, similar to the lower Ca cases, as the drop deforms from its
spherical shape. But after this initial period, velocity does not bear the (a/h)2 scaling;



340 S. Mukherjee and K. Sarkar

1.2 1.4 1.6 1.8 2.22.0
0

0.02

0.04

(a) (b)

FIGURE 12. (a) Viscous drop in a Newtonian matrix: (a) migration velocities are plotted
against wall distances for three different initial drop heights for the same Ca = 0.4. (b) Drop
shapes are shown at three time instances for two sets of initial drop height. The shapes are
shown before, at and after the time marked in (a).

it decreases almost linearly with distance from the wall (figure 12a). The drop which
attains higher velocity in the initial period has a quicker decay afterward. The drop
shapes shown for three consecutive time instants and hi/a = 1.2 and hi/a = 1.5 in
figure 12(b) indicate that the drops stretch and experience necking initiating breakup.
The migration velocity (computed for the centre of mass) tends to increase post-
necking; time instants for necking are indicated in the velocity plots. The drop
becomes more like two satellite daughter droplets, ellipsoidal in shape, attached by
a cylindrical thread. The increase in migration velocity post-necking might be ascribed
to this change in shape from a cylindrical shape to such a double-ellipsoidal shapes.
The daughter droplet that would be generated close to the wall is smaller than the
other one. The breakup process takes a long time and we have stopped our simulations
when the neck has become less than 4 % of the initial radius.

Next we consider a drop with the same capillary number Ca = 0.4 in a viscoelastic
matrix. Effects of matrix viscoelasticity on the drop breakup was seen to be non-
monotonic by Aggarwal & Sarkar (2008a). For a drop experiencing breakup in a
Newtonian matrix, introduction of matrix viscoelasticity first leads to a bounded shape
due to decreased inclination away from the extensional axis of the shear (at 45◦),
but further increase results in increased deformation and possible breakup due to
large viscoelastic stresses at the tips. Here, we note similar effects in the presence of
wall effects and migration. The extensibility of FENE for these cases is reduced to
L2 = 200 to preclude drop shapes with highly stretched tips. In figure 13(a), we plot
the length of the semi-major axis of the migrating drop for several Deborah numbers
for hi/a = 1.5. The Newtonian drop breaks (figure 12). But introducing viscoelasticity
stabilizes the drop: initially it grows to a maximum size but then relaxes to a stable
shape. This inhibition of breakup is because of the decreased viscous stretching due
to reduced drop inclination. Figure 13(b) shows the migration velocity for the same
set of parameters; viscoelastic stabilization reduces the drop velocity gradually. The
inset of figure 13(b) shows typical stabilized drop shapes which are different from
those seen in Newtonian matrix. Figure 13(c,d) plots the same cases but for hi/a= 1.2.
Here, for all of the Deborah numbers considered, the drop undergoes breakup due



Near-wall migration of a viscous drop in a sheared viscoelastic matrix 341

0.02

0.04

0.06

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

1

2

3

4

5

6

0 10 15 20 25 305

0.01

0.02

0.03

0.04

0.05

0 10 15 20 25 305

(a) (b)

(c) (d )

FIGURE 13. The dimensionless length of the semi-major axis of the drop (a) and the
migration velocity (b) for hi/a = 1.5 and Ca = 0.4. The inset of (b) shows drop shapes
for De = 0.25 and 0.75 at a non-dimensional time of 60. The dimensionless length of the
semi-major axis of the drop (c) and the migration velocity (d) for hi/a = 1.2 and Ca = 0.4.
The inset of (d) shows drop shapes for De = 0.5 for three time instances (before, at and after
the minimum velocity is achieved).

to the increased viscous and viscoelastic stresses in the proximity of the wall. They
experience an increase in migration velocity after necking similar to the viscous case.
To delineate the details of this time-dependent dynamics, a far more comprehensive
parametric study is needed, not pursued here for the reason of brevity. We merely
conclude that unlike the cases with moderate deformation, the dynamics here is no
more independent of the initial drop height. The change in initial drop height can lead
to very different dynamics: from bounded drop to drop breakup.

5. Conclusion
We have numerically simulated the effects of matrix viscoelasticity on the migration

of a deforming drop suspended in a shear flow near a wall. The matrix viscoelasticity
is modelled using FENE–CR constitutive equation. For Newtonian cases, simulated
migration velocity and the excess deformation match well with previous analytical
results (Chan & Leal 1979; Shapira & Haber 1990) and BEM simulations (Uijttewaal
et al. 1993). Adding viscoelasticity in the matrix retards the migration process. Similar
to the Newtonian case, after an initial transient period, the drop reaches a quasi-steady



342 S. Mukherjee and K. Sarkar

case, when the migration velocity for low Deborah numbers depends only on the
instantaneous drop position and scales linearly with inverse of the square of drop–wall
separation. The velocity varies linearly with viscoelasticity βDe. The local extensional
flow near the tips gives rise to large viscoelastic stresses for high De, particularly at
the tip near the wall leading to highly stretched drop tip. The tip becomes smoother as
the drop moves away from the wall.

Viscoelasticity reduces drop inclination, and deformation varies non-monotonically.
The decreasing drop inclination tries to increase migration. However, it is overcome
by the viscoelastic tensile force along the streamline around the drop resulting in
retarded migration compared with the Newtonian case. The slip velocity varies
non-monotonically with increasing viscoelasticity in a similar fashion as that of the
deformation. During the transient part of the migration, the response time scale of the
velocity and the inclination growth is dependent only on the Deborah number.

The perturbative theory relating the stresslet, the non-Newtonian stress and the
lateral migration velocity clearly demonstrates the underlying physics. One would
expect that decreasing drop inclination (alignment with the flow) restores fore–aft drop
symmetry, and therefore is responsible for decreased lateral migration. However, the
stresslet theory shows that the decreasing inclination angle counter-intuitively increases
the interfacial stresslet contribution aiding drop migration. The decreased migration is
due to the larger retarding effect of the non-Newtonian contribution to the stresslet (the
difference of first and second normal non-Newtonian stresses). Using the simulation
and the theory, we obtain an algebraic expression for the migration velocity as a
function of Ca, De and β.

We briefly consider a case of larger capillary number (Ca = 0.4) to show that
the larger deformation prevents attainment of a quasi-steady state: the drop dynamics
depends on initial drop heights. For the Newtonian case, for this capillary number,
the drop eventually breaks by a necking process. The migration velocity initially
decreases linearly with drop height. However, after initiation of the necking process,
the migration velocity tends to increase. Introduction of matrix viscoelasticity tends to
stabilize the drop against breakup: it renders bounded drops that are initially at larger
heights away from the wall, but fails to prevent breakup for those initially closer to the
wall, details depending on the many parameters of the problem. For larger deformation,
the drop dynamics for both Newtonian and viscoelastic cases remain dependent on the
initial condition.
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