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Effective boundary conditions for the Laplace
equation with a rough boundary

By KAUSIK SARKAR AND ANDREA PROSPERETTI

Department of Mechanical Engineering, The Johns Hopkins University,
Baltimore, MD 21218, USA

The problem of replacing Dirichlet or Neumann conditions on a stochastically em-
bossed surface by approximate effective conditions on a smooth surface is studied for
potential fields satisfying the Laplace equation. A combination of ensemble averag-
ing and multiple-scattering techniques is used. It is shown that for the Dirichlet case
the effective boundary condition becomes mixed and establishes a relation between
the averaged field and its normal derivative. For the Neumann problem the normal
derivative on the smooth surface equals a suitable combination of first- and second-
order derivatives tangent to the surface. Explicit results are given for small boss
concentration and illustrated with the examples of spheroidal and spherical bosses.
For the Dirichlet case with hemispherical bosses, direct numerical-simulation results
are presented up to area coverages of 75%. An application of the results to the cal-
culation of the added mass of a rough sphere in potential flow, of the capacitance
of a rough spherical conductor, and of the transmission and reflection of long water
waves at a smooth-rough bottom transition aids in their physical interpretation.

1. Introduction

A considerable amount of work has been devoted to the problem of wave scattering
from rough surfaces (Biot 1968; Tolstoy 1980, 1984, 1986; Ogilvy 1987, 1991; T'wersky
1957, 1983; Lucas & Twersky 1988). The objective pursued in these studies is that of
substituting the exact boundary conditions that hold on the rough surface by simpler,
if approximate, conditions applied on a smooth approximation to it. Typically this
research has employed methods and techniques developed in the context of multiple-
scattering theory (see, for example, Foldy 1945).

The literature devoted to the corresponding problem in connection with other
equations seems however to be rather sparse. The propagation of water waves in
a shallow channel with a rough bottom has led Rosales & Papanicolaou (1983) to
study the Laplace equation in the presence of a Neumann boundary condition on
a rough surface. Miksis & Davis (1994) have studied the advancing of a gas-liquid
contact line over a rough surface. Beavers & Joseph (1967) and many others (Saffman
1971; Taylor 1971; Richardson 1971; Nield 1983; Jansons 1988) have considered the
related problem of the effective boundary conditions at the surface separating a
porous medium from clear fluid.

In this paper we develop a method that appears to be of broad applicability to
a variety of problems. The method is presented here for the case of the Laplace
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426 K. Sarkar and A. Prosperetti

Figure 1. Model of an embossed surface.

equation. A companion paper (Sarkar & Prosperetti 1996) deals with Stokes flow.
The Helmholtz problem is addressed in Sarkar (1994).

The rough surface that we envisage here is of the type introduced by Twersky
(1951) and studied extensively by him and other writers (see, for example, the review
by Ogilvy (1987) and references therein). It consists of small irregularities—bosses—
placed on an underlying smooth surface (figure 1), and is therefore different from
other rough-surface models in which the roughness may be characterized as being of
the ‘wavy’ type. It is this circumstance that enables us to develop an approach to the
problem inspired by multiple-scattering theory. We calculate the effective boundary
conditions to be applied to the field (¢) by taking the ensemble average of the exact
field ¢ over all possible arrangements of the bosses on the smooth surface. As in all
similar analyses, we encounter a closure problem that, in the dilute limit, is dealt with
in the way introduced by Foldy (1945). For the particular case of hemispherical bosses
at finite concentrations we resolve the closure issue by direct numerical simulation
(58).

With suitable assumptions as to the smallness of the irregularities, for homoge-
neous Dirichlet conditions on the exact rough surface, we find a mixed effective
boundary condition on the approximating smooth surface establishing the propor-
tionality of the field to its normal gradient. For the Neumann case and a uniform dis-
tribution of bosses, the normal gradient is found to be proportional to the tangential
Laplacian of the field. In the presence of surface gradients of the boss concentration,
a further term appears. To illustrate the physical meaning of these results, in § 10 we
briefly consider applications to the calculation of the added mass of a rough sphere
in potential flow, of the electrical capacitance of a conductor in the shape of a rough
sphere, and to the transmission and reflection of surface waves in a shallow channel,
the bottom of which changes from smooth to rough.

In §2 we present the mathematical formulation of the problem and in §3 and
4 develop the necessary statistical tools. In §5 an exact general non-local form of
the boundary condition is derived for the Dirichlet and Neumann problems. Explicit
dilute-limit results are obtained in §6 and illustrated for bosses of several different
shapes in §7. The two-dimensional case is briefly considered in §9.

In some of the simpler cases (e.g. hemispherical bosses) the dilute-limit results
that we find can be recovered from the multiple-scattering literature simply by set-
ting the wavenumber to zero (see, for example, Biot 1968; Tolstoy 1980, 1984, 1986;
Ogilvy 1987, 1991; Twersky 1957). However, the Helmholtz operator presents diffi-
culties that do not arise with the Laplace operator, such as a more limited set of
separable coordinate systems and the presence of the wavelength as an additional
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Figure 2. Definition of quantities pertaining to an individual boss.

length scale. As a consequence, on the one hand our results can be derived in a more
straightforward way than the corresponding multiple-scattering results and, on the
other, we are able to solve problems that have not been solved for the Helmholtz
equation. In particular, the analogue of our direct numerical simulations cannot be
found in the multiple-scattering literature. Furthermore, for plane surfaces, we are
able to obtain an exact result that can form the basis for further extension of the
theory by both analytical and numerical means. Examples are higher order terms
in the boss concentration or in the ratio of the boss to the body scale. It would be
very difficult to pursue such developments on the basis of the available results for
the Helmholtz operator.

2. Formulation
We consider the Laplace equation for a field ¢
V3¢ =0 (1)

in a domain {2 bounded (possibly only in part) by a ‘rough’ boundary 92,. The
remaining part 9% of the boundary, if any, is assumed to be smooth and far away
from Of2, in a sense to be made more precise below.

We only wish to consider boundaries that would be smooth except for the presence
of non-overlapping bosses, or ‘bumps’, placed over a smooth surface Ss. Thus, we
exclude roughnesses that might loosely be described as being of a ‘wavy’ type. More
precisely, we shall think of 92, as constructed as follows (figure 1). Start from a
smooth surface S; with a minimum radius of curvature R, and consider an open
surface B of such a shape that it can be closed by the addition of the portion of
a plane, the ‘base’. We assume that B is small in the sense that its dimensions, of
order a, are much smaller than Ry. The rough boundary 92, is generated by placing
identical copies of B over Ss. This construction is immediately generalizable to bosses
of different shapes and sizes and to the corresponding two-dimensional problem in
which the bosses are infinitely long ridges (see §9).

According to this construction, 92, consists of the surfaces B*, a =1,2,..., N of
the N bosses, and of the portion of Ss not covered by them. We shall denote by o“
the base of the ath boss, i.e. its intersection with Sy (figure 2). Note that B~ |Jo®
constitutes a closed surface. The boundary 9f2, coincides with S; away from the
bases 0 and it has therefore a slowly varying normal in these regions.

On 012, ¢ is subject to homogeneous Dirichlet

¢=0 (2)
or Neumann
n-V¢=0 (3)
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428 K. Sarkar and A. Prosperetti

boundary conditions. The solution of the problem is made unique by stipulating
suitable boundary conditions—that need not be specified—on the remaining part of
the boundary 842. Our objective is to replace the Dirichlet or Neumann conditions
on the rough surface 82, by approximate boundary conditions on the smooth surface
Ss.

We represent the solution ¢ in the form

N

$=go+ > X* (4)
a=1

Loosely speaking, this decomposition may be interpreted by saying that ¢q is the

zeroth-order approximation to the solution of the problem obtained by substituting

the actual rough boundary with its smooth approximation Sy, while each x® accounts

for the effect of the ath irregularity. More precisely, we make the decomposition (4)

well-defined by stipulating that ¢, satisfies either the Dirichlet

$o=0 (5)
or Neumann
N Vo =0 (6)

conditions on Ss, and the prescribed boundary conditions on the smooth boundary
0f%. Here N is the local unit normal to Ss directed into {2 (figure 2). Each x* also
satisfies the Laplace equation and vanishes on the regular part of the boundary 9%
that is taken to lie effectively at infinity on the scale a of the bosses. Furthermore,
on S; — 0%,

x*=0 or N -Vx*=0, (7
while, on the ath boss, the relations arising from the complete Dirichlet (2) or Neu-

mann (3) conditions are satisfied. To express these conditions it is convenient to
define

=0+ Y X, 8)
B#o
so that, for every a =1,2,..., N,
¢ =x*+y* (9)
On B then x“ satisfies
x* = —y* (10)
or
n® . - Vx* = —n%. V¢, (11)

where n® is the normal to B® directed into 2. It should be explicitly noted that
each x® is well defined also inside the other bosses and satisfies either one of (7)
on their bases. Inside the boss a we define x* to be zero. This definition makes the
expression (4) well defined everywhere in the domain bounded by the smooth surface
Ss.

In the literature on multiple scattering the fields x* and * are referred to as the
‘scattered’ and ‘incident’ fields, respectively.
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3. Probabilistic framework

Although in some cases the exact solution of the previous problem can be obtained
numerically up to a very large number of surface irregularities, for many applications
it is neither useful nor desirable to deal with such a vast amount of information. In
these situations, suitable average quantities are of greater practical interest and it is
the calculation of such quantities that is our concern here.

We make use of the method of ensemble averaging and consider a large number
of rough surfaces, all obtained from S; by different arrangements of the N bosses.
Each arrangement is termed a configuration and denoted by CN = (Y1, Y2 ..., YN),
where Y@ is the position of a reference point of o (e.g. the centre of symmetry)
referred to an arbitrary system of curvilinear coordinates on Ss. A particular config-
uration occurs in the ensemble with a probability proportional to P(CN) = P(N).
Since the irregularities are indistinguishable, it is convenient to use the normalization
(see, for example, Batchelor 1972)

N! :/ch P(N) = /dQYl/d2Y2---/d2YN P(N), (12)

where an abbreviated notation has been introduced to indicate integration over all
possible positions of the irregularities on S;. The restriction to equal irregularities,
that has been introduced only for simplicity, can easily be removed by enlarging the
probability space over which P is defined to include additional parameters charac-
terizing the irregularities such as size, orientation and others.

The reduced probability distribution in which the position of K irregularities is
prescribed is obtained from P(N) by integration

1
K)= ———— [ dcVKP(N
P(K) = =gy [ €V P V) (13)
and satisfies the normalization condition
N!
KpK)= ————. 4
Jack P = (14)

The conditional probability P(N — K|K) for the arrangement CV~K of N — K
particles, given that K particles have the arrangement CX, is defined by

P(N — K|K)P(K) = P(N). (15)

From (12) and (14) one finds the normalization condition
/ch—K P(N - K|K)= (N - K)!. (16)
We can now define the unconditional average of the field ¢ by

@)(@) = 7 [ 4 PU)o(alN), a7)

where the notation ¢(x|N) stresses the dependence of the exact ¢ not only on the
point x, but also on the configuration of the N irregularities. Similarly, we introduce
conditional averages by writing
1
=0 [dCN®P(N - K|K N), 18
O x(@IK) = gy [ 4N PN = KK)g(aIN) (18)

with a similar definition for the conditional averages of other quantities of interest.
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4. Averaged formulation

We now average the problem stated in §2 over the ensemble described by P(IV).
Upon substitution of the decomposition (4) of ¢ into the definition (17), one finds

N
(@)(@) = o(2) + Y 7 [ ¥ POV (@) (19)

In computing the integral it should be recalled that x® has been defined to vanish
when « is inside the boss a. Since the bosses are indistinguishable, all the N terms
in the sum give the same contribution, equal to that of, say, boss «, with « arbitrary,
so that

(#)(2) = dof@) + g7 [ Y Plo) [ eV POV = tla)c

= do(z) + / 2Y*® P(0) ()1 (]a). (20)

Here we have used the definition (18) of conditional average:

W (ele) = = /ch—l P(N = 1ja)x*(@|N). (21)

The problem satisfied by (x®)1(x|c) is readily obtained from the exact formulation
given in §2 by averaging according to (21). Specifically, one finds

VA {x*)1 =0, (22)
with (x*); — 0 at infinity and subject to (7) on S5 — 0® and either
(X1 =—(W%h (23)
or
n® - V{x*)1 = -n% V(@) (24)
on B*.

At this point one encounters the difficulty inherent in all averaging approaches,
namely that the mathematical problem for the averaged quantities is not closed.
Indeed, upon calculating (1*); according to definition (18) with K = 1, it is readily
found that

(W) (la) = go + / AY® P(Bl) (x*)(|af), (25)

where now configurations such that « is inside another boss 5 contribute nothing by
definition of x®, and (x?); is given by (18) with K = 2.

5. The effective boundary condition

It is possible to derive a formal expression for the effective boundary condition on
Ss without solving explicitly the problem posed in the previous section. We show the
procedure in detail for the Dirichlet problem, and then give an abbreviated treatment
of the Neumann problem.
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(a) Dirichlet problem

Let GP(z,y) be the (exact) Green’s function appropriate for the Dirichlet problem
in the domain bounded by Ss and 8f2. The general theory of Green’s functions
ensures that GP(z,y) = GP(y,z) and that GP = 0 when either  or y are on S.
In view of this property, and of the condition (x*); = 0 on Ss — o, Green’s identity
for (x*); reduces to

fe" D
onale) = [ By, X i) - [ aBy aehtvla) G @),

o Ny Bo ony
(26)
where the integrals are over the surface B of the ath boss. We now apply the stan-
dard procedure to express (x*); in terms of a single layer (see, for example, Stakgold
1979, p. 514, or Kress 1989, p. 69). Since the bosses do not overlap, the ‘incident’ field
(1*); is harmonic and non-singular in the closed domain bounded by the surface B*
of the irregularity and the underlying portion o of Ss. Green’s identity written for
the same point & appearing in (26) and the closed surface o | J B therefore reduces

to

oW oGP
= dB¢ D _ dB® (4™

0= [ aBy 6Py i wio) - [ By W wie) G-
The left-hand side vanishes because x is outside the closed surface o*J B*. The
first integral does not contain a contribution from o® because GP vanishes for y on
Ss, and similarly for the second integral since »* = 0 on Ss from definition (8) and
the conditions satisfied by ¢o and the x*.

By adding (27) to (26) and recalling condition (23), we then find

(z,y). (27)

O{P*)1

ony

(yla).

(28)

Equation (28) can be simplified considerably if we take the point x in an interme-

diate range far from the boss on the boss scale, while still close to Ss with respect to

the surface radius of curvature, i.e. a < |€ — y*| < Rs. In the language of singular

perturbations, this would be the ‘matching region’, and it is at this point that we

explicitly use the postulated separation of scales between the bosses’ size and the
‘macroscopic’ dimensions of Ss. Locally then, near y®, we may write

o1
dmjz —y|  drlz -]

(o) - [ aB; 6Py 20 gla) = [ dBy &P(ey)

B ay

GP(z,y) = + FP(z,y), (29)
where ¥’ is the image of y in the plane tangent to Ss at y* and F D is regular and
harmonic everywhere away from S and very nearly vanishes in the neighbourhood of
B<. (By y* we indicate the position vector of the centre of o in three-dimensional
space. The notation Y® is used instead for the position of the same point expressed in
terms of curvilinear coordinates on the surface Ss.) For  in this intermediate range,
1/|z — y| and 1/|x — y'| are much larger than F. (Note that this approximation
is not related to the density of irregularities on the rough surface, but only to the
postulated smallness of the ratio of the boss scale to the radius of curvature of Ss.)
Hence, an expansion of GP in a Taylor series centred at y* gives

GP(z,y) ~ GP(x,y*) + (y — y*) - V, G (z, y*) + - --. (30)
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432 K. Sarkar and A. Prosperetti

However, GP vanishes on S; and, for the same reason, of its first derivatives only the
normal one is non-zero at y*. Hence

G°(z,y) ~ (y —y*) - V,G°(z,y*) =2[N - (y —y*)|N - V,G(z,y*),  (31)

where G = —1/(4n|x —y|) is the free-space Green’s function. The factor 2 is a direct
consequence of the image point in (29). We thus approximately find from the integral
equation (28)

(@) = 2K + PN - ¥, Gz, 3, (32)

where
R = [ aBy N -y 7 o), (33)
P = [ aByN - -y 2 ) (34)

are linear functionals of their arguments. It may also be noted that, from (9),

9{¢):
ony

ke = [ BNy - ) 52 . (35)

By inserting (32) into the expression (20) for the average field we have
@)@) =0 +2 [ EYP@)K + PN -V,Gla.y”) (36)
S
This relation shows that the effect of the bosses is represented by a suitable distri-
bution of dipoles over the surface S;. We now take an ‘inner limit’ of (36) by letting

the field point « approach S; and use a standard result of potential theory (Kress
1989, p. 68; Stakgold 1979, p. 512) to find

(9) ()

(e
5. = —P(z)(K+P) +/ d*Y*P(a)(K* + P“)—]\—rl—ga(lasi), (37)
S -
where we have dropped the superscript « in this term as X and P in the first term
are to be evaluated for the boss centred at € S;. The integral, in which y® is the
position vector in space of the point having the surface curvilinear coordinates Y%, is
now regular. If Sy is plane, this integral vanishes identically due to the orthogonality
of N and y*—. If the radius of curvature is large, as postulated here, its contribution
will be small and (37) gives the effective boundary condition

()(z)s, = —P(z) [+ P, (38)
or, from (35),

@ @5, = ~P@) [ 4B, N -y -5 ylz). (39)

This relation explicitly shows the dependence of (¢) on (¢);.

(b) Neumann problem

We now denote by GN the exact Green’s function for the Neumann problem in
the domain bounded by S, and 9(2. By following steps similar to those leading from
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(26) to (28) (see, for example, Stakgold 1979) we find, in place of (28),

O h(ala) + [ dBy (X h(yla) 5 —(z,y) = — | dBy (¥*)h(yle) 5 —(,y).
Be Ty B 6ny
(40)
In this case, the form of GV in the matching region is
1 1
GN(z,y) = + FY(z,y), (41)

Cdnlz —y|  4nlz — o]

where, as before, 4’ is the image of y in the plane tangent to S; at y® and N - VEFN
very nearly vanishes on Ss and is regular and harmonic everywhere away from S;.
An expansion similar to (30) now gives

n®- VGN(:c, y) ~2n® - VyG(x,y%), (42)

where G, as before, is the free-space Green’s function, and V gy denotes the projection
of the gradient on the tangent plane at y®. The appearance of Vg rather than V is
a consequence of the fact that IN - VGN = 0 on the plane. Upon substitution into
(40) we may thus write

(X*)1 ~ —2(k* +p*) - VuG, (43)

where
k= [ By wla)in® - N(ne - N (49)
v = [ aB; ) (wle)n® ~ N(n® - N (45)

The subtraction of the second term in the integrands removes the component normal
to the tangent plane that is not required as is clear from (43).
Upon substitution into (20) we find

(6)(@) = do — 2 /S 2Y° P(a)(k® + p®) - Vi G

=¢o—2 | d’Y*Vy - [P(a)(k* +p*)G]
S

+2 [ d®Y*GVy - [P(a)(k* + p*))]. (46)
Ss

After eliminating the first integral by using the divergence theorem and assuming a
vanishing contribution from the bounding curve, we recognize that the effect of the
bosses is represented by the distribution of suitable sources on Ss. Upon taking the
normal derivative and evaluating it on S; we have then, since IN - V¢ vanishes by
definition,

N V() =2 /S &Y (N - V,G)Vy - [P(a)(k* + p®)]. (47)

The same step leading from (36) to (38) gives now
N-V{$)ls, = Vu - {P(z)(k+p)}, (48)
which is the effective boundary condition for the Neumann problem. The regular
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integral analogous to that of (37) has already been discarded here and k and p are
to be evaluated for the boss centred at x.

Equations (38) and (48) are the general form of the effective boundary conditions
for the Dirichlet and Neumann problems, respectively. In order to render them fully
explicit, we need expressions for the quantities K, P, k and p. This task is accom-
plished for the diluce limit in the next section. For the Dirichlet problem, we address
numerically the case of finite concentrations in §8.

6. The first-order problem

We now obtain explicit expressions for the effective boundary condition in the
dilute limit, i.e. to first order in the area fraction covered by the bosses.

(a) The Dirichlet problem

For the Dirichlet problem we start by noting that, since ¥ accounts for the effect
of all the other bosses on the boss located at y*, (1)*); is slowly varying near y* so
that, on B, we may write

(WN(y) =(y—y*) V) (y*) +---. (49)

Here we have used the fact that, since bosses cannot overlap, (1*); vanishes by
definition on the base o of the ath boss. For the same reason, only the normal
component of the gradient can be non-zero so that on B®, approximately,

8 ,lpll o o
WL (yla) = (n - NYIN - V() )] (50)
Ty
Upon substitution into definition (34) of P, we then find
PH((*)) = VAN - V(™) (y*)], (51)
where V¢, a constant only dependent on the geometry of the boss, is given by
Ve= [ dBy[N-(y—y*)|(N n) (52)
B«

A straightforward application of the divergence theorem shows that V* is nothing
other than the volume of the boss. If L denotes the characteristic length scale for
the variation of ()*);, the relative error in (51) is of the order of (a/L)?.

We now turn to the problem (22), (23) for (x*):. Again we use the slow variation
of (¢)*); and (49) to write the boundary condition (23) in the approximate form

(X(2) ~ =[( —y*) - NJ[N - V()1 (y*|)]. (53)

In view of the linearity of the problem, it is evident that the solution of (22) subject
to this boundary condition will have the form

(Xh(z) = X(x - y*)N - V{*)1(y*|a), (54)

for a suitable harmonic function X (& — y*) dependent only on the geometry of the
boss and satisfying, on the boss’s surface,

X(x)=—-N . (55)
Hence, the quantity K¢ defined in (33) may be written
K =V*k*N - V{¥*) 1 (y*|a), (56)
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in which
1 0X
o BaN . o @ .
=g [ BN -y S -v) 657)
Upon substitution of these results into the form (38) of the effective boundary
condition, we then find
(9)(@) = P(x)V(1L+ k)N - V()1 (z|). (58)

Upon recognizing that

P(x)V =C(x) (59)
is the volume occupied by the bosses per unit surface of S5, we may also write
(9)(x) = —(1+ k)C(z)N - V()1 (z|). (60)

This is still an incomplete result as the field (1), is not known. Since, however, this
field appears here multiplied by a quantity of the first order in the boss concentration,
it is consistent to use for it an approximation of zero-order accuracy. While one could
use the ‘incident’ field ¢y, it is clearly more accurate to use the classic approximation
introduced by Foldy (1945), namely

(¥)1 = (9), (61)
so that the effective boundary condition (38) becomes
(9)(@) = —(1+k)C(x)N - V() (). (62)

The original Dirichlet boundary condition is thus transformed into a mixed condition.
A discussion of this result will be given in § 11 and values of k for some specific shapes
will be calculated in §7.

(b) The Neumann problem
For the Neumann problem, the expansion analogous to (49) is

WN1(y) = W NY*) + (Y —y*) - Va@*)h(y*) +---, (63)

where we have used the fact that IN - (¢)*); vanishes on the base o of the ath boss.
Upon substitution of (63) into the integral (45) defining p®, it is readily found
that the first term contributes nothing while, from the second term, one has

p* = VoVH(Y")1(y%), (64)

with a relative error of order (a/L)?. This contribution is very similar to that found
for the Dirichlet problem.

To calculate k* we need to solve the problem (22), (24) for (x*):. Again we use
the slow variation of (¢*); and (63) to write the boundary condition (24) in the
approximate form

n® V(x*)1 = —n* - Vg (%) (y*a). (65)
In this case the linearity of the problem entails that the required solution of (22) will
have the form

(x*)1(xly®) = [M*(x - y*)]- Va (¢ )1(y*|a), (66)

where M is a vector in the tangent plane at y*. Each one of its components satisfies
the Laplace equation subject to N - VM =0, i = 1,2 on the plane, and, on B¢,

n® . VM®=-n®.e, i=12, (67)
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where e, e; are a pair of orthogonal unit vectors in the plane and n® is the outward
normal to the boss as before. With this relation the vector k* defined by (44) becomes

k® = VEM® -V (*)1(y*|e), (68)

where the 2 x 2 tensor M only depends on the geometry of the bosses and is given
by
Mo =1 [ gpepe ® (M*)T, (69)
Ve Jga
where ® denotes the outer product and the superscript T the transpose. It is readily
shown that this tensor is symmetric. Indeed, from (69) and the boundary conditions
(67), we may write

1
W
The integral can be extended to the entire boundary of the problem because the
normal gradient of M“ vanishes on the smooth part of the boundary away from B*
and because M vanishes at infinity. Application of Green’s identity then proves the
statement since the components of M are harmonic. Furthermore, for axisymmetric
bosses, M® is a multiple of the identity Z. To prove this statement, consider a rotation
of the coordinate system around the axis of the boss. The components of M in the
new frame must equal those in the old frame because the mathematical problem
is identical in the two frames. In view of the general transformation properties of
vectors and tensors, we may then write

M® = OMOT (71)

for any orthogonal rotation matrix O. As a consequence, M = mZ.
Upon substitution of (64) and (68) into the form (48) of the effective boundary
condition, we find

MS = — /B dB> M (VM - n®). (70)

N -V(¢) =V - [CT+ M) V() (z|z)], (72)

where C' is the volume concentration of bosses per unit surface defined in (59).
Adopting the same closure (61), this result takes the more explicit form

N -V(@)ls, = Vu - [C@)(T + M) Vu(s)()]. (73)

If the tensor M is a multiple of the identity and the boss concentration C uniform,
since (¢) is harmonic, we find the particular form

9¢) 0%(¢)
ON aN?’

where /0N is the derivative in the direction normal to the plane. Examples of the
calculation of the constant m are given in the next section.

=-C(1+m) (74)

7. Examples

We now consider some specific cases in which the constants that enter the effective
boundary conditions derived before can be calculated explicitly. The simplest case
is that of a hemispherical boss. We also consider prolate and oblate hemispheroids,
and bosses in the form of spherical segments.
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Hemispherical bosses. Assume a coordinate system centred at the centre of the
boss’s base with the zs-axis along the axis of symmetry of the boss. From (55) the
function X required for the Dirichlet problem is evidently

X = —ad’z3/r°, (75)

where r is the distance from the centre of the hemisphere, and a is the radius of the
hemisphere. Therefore, for this case,

/2
k= —3/ cosf(2cosf)dcosf = 2. (76)
0
The Dirichlet effective boundary condition (62) then becomes
(¢)(x) = —3C(x)N - V(¢)(z). (77)
Similarly, for the Neumann problem, we have
M = ja°(x —y))/r°, (78)

where the subscript || indicates the component parallel to the plane. A straightfor-
ward calculation confirms the tensor M to be a multiple of the identity with

m= 3. (79)
The effective boundary condition is then
N-V($) = §Vu - [C(x)VH(e)]. (80)

Prolate and oblate spheroids. The determination of X and M is similar for the
case of bosses having the shape of oblate or prolate hemispheroids. Now oblate and
prolate spheroidal coordinates are convenient. The detailed calculations are given in
the Appendix.

Denote by A the aspect ratio of the spheroids,

A=b/a, (81)

where a and b are the axes in the direction parallel and perpendicular to the plane.
For the oblate case A < 1, while 4 > 1 in the prolate case. Then, for the Dirichlet
problem, we find

A~2 arctan (\//1“2 -1)—-vA2-1

k=— , 82
A2 [arctan (\//1“2 —1) - VA2 - 1] (82)
for both the oblate and prolate cases since taniu = itanh u.
For the Neumann problem M = mZ is a multiple of the identity with
A~2%arct A2 1) —/A2 -1
. arctan (v )=V (83)

~ A-2arctan (VA2 =1) + VA2 —1(1 — 24-2)’

valid again for both the oblate and prolate cases.

The quantity 1 + k is shown as a function of the aspect ratio by the dotted curve
in figure 3. The dashed curve is the corresponding result 1 + m for the Neumann
problem.

Spherical caps. For spherical caps we define the aspect ratio A as the height above
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10! T —— T
spherical-cap (Dirichlet)
----- hemispheroid (Dirichlet)
— — — - hemispheroid (Neumann) /.’
B
=X
)
+
100 . — ] . "

107! 100 10!
aspect ratio A

Figure 3. Graph of the quantities 1 + k& and 1 + m defined in (57) and (69) as a function of
the aspect ratio in the dilute case. The dotted and full curves show 1 + k for spheroidal and
spherical-segment bosses, respectively. The dashed curve shows 1+ m for spheroidal bosses. For
the spheroidal case, the aspect ratio is the height divided by the radius of the base. For spherical
segments, the aspect ratio is the height divided by the radius of the sphere.

the surface divided by the sphere’s radius. Clearly, with this definition, 0 < 4 < 2.
In this case the constant k for the Dirichlet problem is

_ 8ma® [ sinh(m — no)T

k
vV Jo cosh 7t
| 72 7 sinh(m — ng)7 cot ’770 — 272 cosh(m — no)T dr, (84)
sinh no7 3sinh 77
where
cosng = A —1. (85)

For the case of a hemisphere 79 = -;—7r and k = 2 as before. The quantity 1 + & is
shown as a function of the aspect ratio by the solid curve in figure 3. Upon comparing
with the spheroidal case it is seen that the results are not very sensitive to the shape.
We have been unable to find a comparable analytic expression for the constant m
of the Neumann problem. The difficulty arises in the inversion of the Mehler—Fock
transform necessary to impose the boundary conditions on the surface of the boss.

8. The Dirichlet problem at finite concentrations

While analytic results to second order in the boss concentration can probably be
found, it does not seem possible to go to arbitrary concentrations by analytical means.
Hence, we now treat the Dirichlet problem for hemispherical bosses numerically. In
addition to its intrinsic interest, the numerical solution is also useful to gauge the
domain of validity of the dilute calculations of the previous section.

In the absence of surface irregularities, a Taylor series expansion of ¢ near the
boundary S; would start with a term proportional to the distance from S; as Vg¢ = 0
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on Ss. In the presence of irregularities, (¢) does not necessarily vanish on the surface.
However, for a uniform distribution of bosses as the one to be considered in this
section, equation (38) shows that its horizontal gradient still vanishes. In this case,
therefore, far from the surface in terms of the boss’s size, but near it on the scale of
the other ‘macroscopic’ lengths characterizing (¢), we expect a structure of the form

¢(z) ~ B(zs — D), (86)

where x3 is the perpendicular distance from Ss. This ‘local’ expression is equivalent
to the effective boundary condition on the tangent plane 3 = 0

¢=—-DN -V¢. (87)

Since D = 0 for a smooth surface, D must depend upon the boss concentration. This
fact will be clearly seen from the analysis that follows. In view of the linearity of the
problem we can also assume B = 1.

To solve the problem we make the following remark. Let @ be the solution of
Laplace’s equation in the whole space outside an infinity of spheres with their centres
on the plane z3 = 0, vanishing on the surface of the spheres, and asymptotic to x3
as r3 — Fo0o. Then, in the half-space z3 = 0, @ coincides with the solution ¢ of
the rough boundary problem that we are interested in. A powerful method for the
calculation of @ is available on the basis of the results of Sangani & Behl (1989) as
explained below. This symmetry argument fails in the case of the Neumann problem
which, for this reason, cannot be solved by the present technique.

The plan of the calculation is the following. We place the centres of N non-
overlapping spheres at random in a square of side h, and then replicate copies of this
unit cell infinitely many times to cover the plane. The fraction of area covered by
the bosses is clearly :

B = ma*Ng/h?, (88)
and the volume of bosses per unit area
C = 2af. (89)

The rough surface constructed in this way is only random up to the scale h. The
error due to this circumstance can be decreased by increasing h as discussed below.
By randomly rearranging the spheres in the unit cell many times, we generate an
ensemble of rough surfaces. The exact Dirichlet problem is then solved numerically
for each one of these realizations of the rough boundary, and the constant D defined
by (86) is obtained from each solution. From the average of all the Ds thus calculated,
we then find the effective boundary condition sought. This procedure is legitimate as
it will be clear from the following that, far from the rough surface, V¢ is a constant
unit vector for all realizations so that D and V(¢) are uncorrelated.

(a) Numerical method
Following Ishii (1979), Sangani & Behl (1989) have studied the solution of the
Laplace equation in unbounded space in the presence of an infinite plane square
lattice of spheres. The system described before corresponds to the superposition
of Np such lattices. The solution for @ can therefore be written down directly by
superposing the solutions of Sangani & Behl (1989),

NBOO n

S=az5+ Y Y > [A%.05 Ay + A2, 057" AR U (r — %), (90)

a=1n=1m=0
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where
0
03 = —, 91
a\" a\"
Am =\ 5~ a 5
- (3)
. m 8 m

Here r*, with a« = 1,2,..., Ng are the position vectors of the bosses in the unit cell
and the function ¥ satisfies

V2U(r)=4ry 6(r—rh), (93)

where 7! are the lattice points
' = h(lie; + laey), lio=0,+£1,+£2,43,.... (94)

The function ¥ has been evaluated by Sangani & Behl (1989), to which the reader
is referred for details. It is shown in Appendix B that, for z3 — oo, @ given by (90)
is asymptotic to

dr E
R DA%, (95)
a=0
so that the constant D defined in (86) is given by
A OB
D= > As, (96)
a=0
In the notation of §6 we thus have
6 L
1+k=m;%. (97)

In order to evaluate the constants A%, .,

of @ in the vicinity of each boss, namely

o)=Y [Cf{m + D2, (g)ml} v+ [é:;m +De, (.‘%>2"“] v (98)

A%, we use an alternative representation

n=0m=0 r
where
Yt = ———1—7'”Pm(cos 6) cosmep, Y™ = ———l—r"Pm(cos 0)sinmep. (99)

(r,0, ) are spherical coordinates centred at the centre r® of the ath boss. The
requirement that the field at the surface of the ath boss vanish is satisfied if

Cgm = —ng’ év?m = _ng' (100)
Following Sangani & Behl (1989), we relate the constants D2, , D2  to A®

A2 as
nm? nm? mn
follows. The terms of the local and global expansions that are singular at the centre
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of the ath boss are matched to find

o+l _ (n +m)l(n —m)!(=1)"™ A

om—1 nm?

{63
Dy a

n+m)l(n —m)l(-1)"~™
gm—1

D& ot = ( A . (101)

For the terms regular at r* we have
CS. = €m(=2)"05 ™A, d(r)"E, Ce = en(—2)"03 ™A, $(r*)e,  (102)

where €,, = 1 — %6m0 and the superscript ‘reg’ indicates the regular part of the
function obtained by removing the singularity at » = r*. In evaluating & in the right-
hand side of these relations, the representation (90) should be used. The constants
ce, C’,‘fm, Dg. ., ng are readily eliminated to obtain a linear system involving only
the A2, , A2 .

Some further information on the implementation of this method are given in Ap-

pendix B. Sangani & Behl (1989) give a complete description.

(b) Numerical implementation

The numerical implementation of the previous method requires several approxi-
mations. In the first place, the infinite middle summation over n in (90) needs to
be truncated to a finite number of singularities. We have run several tests with the
hemispheres at various distances and also so close as to nearly touch, and we have
concluded that a maximum value of n = 5 is sufficient. The method of Sangani &
Behl also requires a summation over the lattice points ' (see Appendix B). We
have found that a maximum value of 3 for |/, »| gives satisfactory accuracy up to a
concentration very near the close-packing limit.

Another quantity to be chosen is the number Np of spheres in the unit cell.
Figure 4 shows the running average of the numerical results for 1+ & as a function of
the number of configurations used. The dotted curves are for Ng = 9, the full curves
for Ng = 16 and the broken curves for Ng = 20. The area fractions considered
are, from top to bottom, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70% and 75%. As
expected, due to the greater ‘freedom’ in the centres’ position, convergence is slower
at the lower concentrations. This is illustrated for the case 8 = 5% in figure 5, where
the running average up to 40 configurations is presented for nine (dotted curve) and
16 (full curve) spheres in the unit cell. In all cases the results for 1 + k presented
below have been determined with 16 particles and 20 configurations, except for the
5% case for which 40 configurations were used.

As is evident from (88), for a given area fraction, increasing Np has the effect
of increasing the side h of the unit cell. Figure 4 also shows then that the present
implementation is not significantly affected by the artificial periodicity of our pseudo-
random surfaces.

To test our computer program, we first compared its results with those of a code
kindly made available to us by Professor Sangani for the case of a single square lattice
of side h. Then we used four interpenetrating lattices with sides 2h and made sure
that the results were identical.
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Figure 4. Running average of the numerical results for 1 + k£ as a function of the number of
configurations used in the direct numerical simulations at finite concentrations. The dotted
curves are for a number Np of particles in the fundamental cell equal to 9, the full curves for
Np = 16, and the dashed curves for Ng = 20. The area fractions considered are, from top to
bottom, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70% and 75%.

3.0 T T T

average (1+k)

28] 11 21 31

number of configurations

Figure 5. Running average of the numerical results for 1 + k as a function of the number of
configurations N used in the direct numerical simulations for an area coverage of 5%. The
dotted curve is for a number Np of particles in the fundamental cell equal to 9, the full curve for
Np = 16. The portion of the curves up to N = 20 is the same as that shown by the corresponding
ones in figure 4.

(¢) Results
The results of the numerical simulations are shown in figure 6. Here we plot the
quantity 1 + k appearing in the effective boundary condition (62)
(¢) = (1+k)CN -V(¢), (103)

as a function of the area fraction 3 defined in (88). The curve starts at the dilute-
limit value 14+k = 3 determined in the previous section and decreases monotonically.
The maximum area fraction for a square lattice is iﬂ ~ (0.785. The simulations have
been run up to 8 = 75%. Over the range 0 < B < 75% the curve in figure 6 is
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Figure 6. Graph of the quantity 1 + &k as a function of the fractional area coverage as obtained
from the direct numerical simulation. The asterisks are the numerical results and the full curve
the polynomial approximation (104).

closely reproduced by the simple polynomial
1+k=3—2.73453 + 0.960 2232, (104)

that is also shown by the line in the figure.

9. The two-dimensional problem

The analysis of the two-dimensional problem proceeds in a very similar way and
a very brief treatment will be sufficient. The term ‘ridge’ rather than ‘boss’ seems
more appropriate in this case.

The results of §5 remains valid provided the Green’s function for the Dirichlet
problem is taken as

1 1
GP(@,y) = 5- log |z — yl - 5-logla — y/| + F>(,v), (105)

in place of (29). A Taylor-series expansion leads to the same expression (31) with
G = [1/(27)]log |z — y|. The definitions (33) and (34) of K* and P still hold with
the integrals interpreted as line integrals over the trace of the ridge. The effective
boundary condition (38) is formally applicable to this case as well.

The analysis of the dilute case proceeds as before with, in place of (56),

K* = A%k N -V {(¥*)1(y*|a), (106)
where A* is the area of the ridge and (cf. (57))
1 0X
o = Ay — y*)—(y — y%). 107
i = g [ BN -y ) (107

As before, the function X is harmonic and satisfies the boundary condition (55) on
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the ridge. The effective boundary condition (62) is also formally unchanged except
that, in this case, C'(z) = P(x)A.

The situation is similar for the case of Neumann conditions. In particular, (48) still
holds with the same formal expressions (44) and (45) for k* and p®. In the dilute
limit we have a result similar to (73) except that, since the tangent plane to Ss is
replaced by a tangent line that we approximate with the z; axis,

0 0
. = 1 _— . 1
N V() = - { @l + m@)] (00| (108
Here
1
m = ——/ dBy nM, (109)
AJp
where n, is the projection of the normal to the ridge onto the z;-direction and M is
harmonic and satisfies n - VM = —n4 on the surface of the ridge.
As an example, for cylindrical ridges with radius a, we readily find
z z
X:—azr—g, M:a2r—21, (110)
so that k =m =1 and
(¢)(x) = —2C(x)N - V(¢)() (111)
for the Dirichlet case and
0 0
. =2— |C(x)— 112
N V(0 =25 |0(@) - (0)(o)| (112

for the Neumann case.

10. Applications

A few applications of the effective boundary conditions derived in the previous
sections are useful to understand their physical content and to give a feeling for the
differences that one may expect with respect to smooth surfaces.

Potential flow past a rough sphere. Consider a sphere of radius R immersed in a
uniform flow with velocity U. The sphere’s surface is characterized by a uniform
distribution of roughnesses. According to (74), the condition of vanishing normal
potential gradient over the rough surface is replaced by
0¢ 0%¢
o = (1 +m)08r2’
where C is the boss volume per unit area and m is a constant dependent on the

boss’s shape. The potential-flow problem subject to this condition is readily solved
to find

(113)

¢-—-Urcos€[1+ (114)

L o®
1-3(1+m)C/R2r3]|"
In particular, the added mass coefficient of the sphere is increased from the value -21—

for a smooth sphere to the value

1 1 1 (1+m)C
5[1—3(1+m)C/R]2—§[1 % }

as if the sphere’s radius were increased by the amount 2(1 + m)C.

(115)
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Capacitance of a rough sphere. Let the electrostatic potential be V far from a
conducting sphere of radius R held at zero potential. According to equation (62),
the exact boundary condition is replaced by

99
5;a
where k is a constant depending on the boss’s shape. The capacitance is readily
calculated to be

é=—(1+k)C (116)

B 4R
1-(1+k)C/R

correspond{ng to an apparent increase of the sphere’s radius by the amount (1+k)C.

C ~ 47 R [1 +(1+ k)%] : (117)

Reflection of surface waves. Consider two-dimensional small-amplitude irrotational
surface waves propagating on the surface of a liquid in a shallow channel. The channel
bottom is smooth for z < 0 and uniformly rough for z > 0. The boundary condition
at the bottom for x > 0 is therefore, according to (74),
folo} 0%¢
— =—(1+m)C—. 118
| 5, = )Cos (118)
The amplitiides of the reflected R and transmitted 7 waves, normalized by the
incident wave, due to the discontinuity in boundary conditions at z = 0 are given by

the formulae
ky —k_ 2k_

ST S
ky+ k- ki +k_’
where k4 are the wavenumbers for z > 0 and z < 0. To find these quantities we
calculate the dispersion relations in the two regions finding, for x < 0,

R =

(119)

w? = gk_tanh hk_, (120)
and, for = > 0,
w? = gk, tanh ¢k, (121)
where h is the undisturbed channel depth and ¢ is determined by
tanhk,(h —£) = (1 +m)Ck,. (122)
With the assumption (h — £)/h < 1, this relation gives
L=h-(1+m)C. (123)

It is therefore clear from (121) that the rough part of a channel behaves as if it were
shallower than h by the amount (1 +m)C. Upon equating (120) and (121), we find,
for small |k — k_|,

_ (1+m)C
ky =k [1—%———755——— , (124)
so that, from(119),
. (1+m)C/2h C N 2 1 [
R orarmaoan =M™ T2 s rmeps S~ 0y
(125)

These results are formally identical to those for an abrupt change of the channel
depth from h to h — (1 +m)C.
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Figure 7. Interpretation of the Dirichlet results in terms of a displacement of the effective
(¢) = 0 surface.

11. Summary and discussion

For the case of Dirichlet boundary conditions we have found for the ensemble-
averaged field (¢) an effective boundary condition of the form

(@)(x) = -(1+k)C(x)N - V(¢)(), (126)

to be applied on the smooth surface Ss supporting the roughnesses. Here C' is the
volume occupied by the roughnesses per unit area of the surface. In the ‘dilute’ limit
(i.e. small fraction of area covered by the roughnesses), the dimensionless constant k
only depends on the roughnesses’ shape, while at finite concentrations it also depends
upon their concentration.

The result (126) can readily be interpreted as follows (figure 7). For zero roughness
concentration, the Dirichlet condition (¢) = 0 is satisfied on the smooth surface Ss.
The presence of the roughnesses has the effect of displacing the surface where (¢) = 0
away from Ss. A linear extrapolation from this ideal surface to Ss would then give
rise to the relation (126). The quantity

§=(1+k)CO(x), (127)

which is dimensionally a length, gives a measure of the displacement of the (¢) = 0
surface from S;. Another way to phrase our results is therefore to say that, in the
presence of roughnesses, the original Dirichlet condition should be imposed on an
ideal surface displaced by § from Ss. Thus, in one of the examples of §10, it was
found that the capacitance of a rough sphere was modified as if the radius had been
increased by the amount (127). From this interpretation it is also evident that, for
any concentration, § must be bounded from above by the height of the bosses.

In the case of finite concentration and hemispherical bosses, we have found (fig-
ure 6) that § grows more slowly than linearly with C. This effect may be explained
as follows. After a few bosses have been introduced, the (¢) = 0 surface, Seg, say,
moves a distance § above S;. As more bosses are added on S, their height above
the surface Seg is smaller by ¢ than their geometrical height. Their volume per unit
area based on Seg is therefore smaller than that based on Ss, and the effect of their
addition thus less than proportional to C.

For the case of Neumann boundary conditions we have found

N -V{¢) = Vu - {C(@)[T + M] - Vu(e)(z)], (128)

where the subscript H indicates the gradient in the tangent plane, Z is the identity
2 x 2 matrix and M is another 2 x 2 matrix dependent on the shape of the bosses. As
found in two examples in §10, here an interpretation in terms of a displacement of
the ‘effective’ surface is still applicable provided the concentration is uniform and M
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diagonal (as is the case, e.g., for axisymmetric bosses). In the general case, however,
the effect of the roughnesses is more complex.

The direct numerical simulation method used for the Dirichlet case cannot be
applied to Neumann conditions. Other approaches that suggest themselves for this
case are of the boundary-integral or collocation type (see, for example, Weinbaum
et al. (1990) for a review of these approaches in the context of Stokes flow).

In deriving our results we have made a number of approximations. The first one
is the separation of scales between the boss size and the local radius of curvature
of the smooth surface S;. On this basis we have approximated S, by its tangent
plane in the neighbourhood of each boss. It would appear possible to embed this
procedure in a proper multiple-scales perturbation expansion of which our results
would then constitute the leading-order term. Higher-order terms in this expansion,
however, would probably acquire a non-local nature as implied by the regularized
integral contributions in our results (see, for example, equation (37)).

Secondly, we have also assumed that any boundary other than the rough surface
is sufficiently far away from each boss that the direct effect of the boss itself on
this boundary is negligible. As a consequence of these two assumptions, the scale
of variation of the average field (¢) is also large with respect to the size of the
bosses, which enabled us to use a linear approximation over distances comparable
with the boss size. If (¢) cannot be accurately approximated by a Taylor-series
expansion, one would again find a non-local effective boundary condition as suggested
by equations (33) and (34).

We have considered the dilute limit—in which the bosses only interact through
the effective field—analytically and the finite-concentration case numerically. An
interesting problem that remains is the analytical study of the finite-concentration
case. It is likely that some form of divergence would arise, to be taken care of by a
suitable renormalization procedure.

The general problem addressed in this study can be extended in several directions.
For example, one may consider the inhomogeneous case (the Poisson equation) or
more complicated (microscopic) boundary conditions, e.g. non-homogeneous or of
the mixed (Robin) type. For the Poisson equation, if the scale of variation of the
forcing is large on the scale of the bosses, it appears that the present method would
go through with only slight modifications. A ‘fine grain’ structure of the forcing in
the neighbourhood of the boundary, on the other hand, would most likely require a
different approach. Since our method is built on the use of suitable Green’s functions,
situations in which these functions cannot be relatively simply approximated would
not readily lend themselves to analysis by the present approach.

The first author is grateful to Dr A. S. Sangani for help and advice with the numerical simulation
described in §8 and to Dr H. N. Oguz for discussions related to some of the calculations of §7.

This study has been supported by DOE and NSF under grants DE-FG02-89ER14043 and
CTS-8918144, respectively.

Appendix A.

This appendix describes the calculations leading to the evaluation of the constant
k for the examples given in §7. As a general reference we use the book by Lebedev
(1965), whose notation we also adopt. As in §8, the coordinate z3 is taken normal
to the plane.
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(a) Prolate spheroid

For prolate hemispheroidal bosses, we use prolate spheroidal coordinates (£, 7, ¢)
related to the Cartesian coordinates by

x1 = dsinhésinncosy, xo=dsinhsinnsiny, x3 = dcosh&cosn. (A1)

The range of these coordinates is 0 < € < 00,0 <7 < 7 and 0 < ¢ < 27. The plane
corresponds to n = 7/2, and the boss is defined by & = &y, with & given in terms of
the aspect ratio A defined in (81) by

cothéy = A =b/a. (A2)

The constant d in (A1) equals a/sinh&.
For the Dirichlet problem, the required solution of the Laplace equation decaying
at large distances from the plane is

X(&,m,0) = > TuPn(cosn)Qn(cosh é), (A3)

where P, and (), are the Legendre functions of the first and second kind. The
boundary conditions at the wall and on the surface of the boss require that

cosh &

Ty = —d——-"2—, A4
! Q1(cosh &) (A4)

and T,, = 0 for n # 1. The constant k defined by (57) is obtained from

8X h hn coth & (8Ql(cosh§)>
= dnde - , A5
v /5 “QiGeon&) \ 08 ), (45)
where the h are the scale factors.
For the Neumann problem, the function M; is given by

My(&,m,¢) = COSsOZU Py (cos )@} (cosh €), (A6)

and M, by a similar expression with cos ¢ replaced by sin . For both M; and M,
the boundary conditions require that

-1
Uy = —dcosh &, (9@%3835—)) : (A7)
3 o

while U,, = 0 for n # 1. Since the shape is axisymmetric, the matrix M is a multiple
of the identity with

(A8)

1 -1
m = %/ Minyhyhy, dnde = — coth &,Q1 (cosh &) <M) _
’ o

o€
(b) Oblate spheroids
For oblate spheroids, suitable coordinates are defined by (Lebedev 1965)
x1 =dcoshésinncosy, xo=dcosh&sinnsiny, x3=dsinh&cosn. (A9)

The transformed coordinates have the same range as before, the plane corresponds
again to n = %’ﬂ', and the boss to & = &y, with &, defined by

tanh&y = 4 = b/a. (A 10)
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In this case d = a/ cosh .
The general solution appropriate for the Dirichlet problem is now

X(E,0,9) = 3 T Pa(cosn)Qn (isinh £). (A11)
The boundary conditions demand that the only non-vanishing coefficient be
sinh &
Th=—-d—r—"—. A12
' Qi (isinh &) (412)
The constant k is given by the expression
Q1 (isinh &) o€ o
For the Neumann problem, the appropriate form of the solution is
My(€,n, ¢) = cos Uy P, (cos )@, (isinh €), (A14)
with M, obtained by changing cos ¢ to sin ¢, and
1/ s -1
Uy = —dsinh g, (22208 O (A15)
o¢ &
One then finds
90 (isinh &)\~
m = — tanh & Q] (isinh &) (—W) : (A 16)
o

(¢) Spherical cap
For a spherical cap we use toroidal coordinates (£, 7, ¢) defined by (Lebedev 1965)

- asinh & cos S asinh € sin ¢ - asinn (A17)

coshé —cosn’ 2 cosh&—cosnp’ > coshé—cosn’

where a is the radius of the base of the spherical segment. The plane corresponds to
17 = 0 and the boss to n = 1 with

1+ cosmyg
sin ng

= A (A18)

For the Dirichlet problem, the appropriate solution is

sinh nT

X(fﬂ% (10) = (2 COSh£ — 2cos 77)1/2 /Oo T(T) -Pir—(1/2)(COSh£) dT? (A 19)

0 sinhnoT
where, from the boundary conditions (Lebedev 1965),

sinh(w — no)7

T(r) = —2ar (A 20)

coshr

Upon substitution of (A 19) into (57), one finds (84).
For the Neumann problem we have been unable to solve the integral equation
necessary to impose the boundary conditions.
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Appendix B.

To set up the algebraic system of equations necessary to evaluate the constants
A% A% of §8a, the derivatives of '8 indicated in (102) are required. We give
here the results needed for the present calculations referring the reader to the paper
by Sangani & Behl (1989) for details.

The periodic Green’s function ¥ may be represented as

U(r) =i (r) — 27|, |/7, (B1)
where
1 2m
P (r) = —hE_/ deQ exp(—27iQ - r), (B2)
oo 1#£0
with
= 1Ql, Q= kes+ 1 (hey +bes). (B3)

Further manipulation reduces this expression to
1 *
= ;(CI + Cu — Chy); (B4)

where

Cr= —1/22451/2( r—r)>7 (BY)

Cu=o /OO dk exp(—27ikz3) / dﬁZeprwﬁo(qlz + k*) — 27iq; - s], (B6)

00 1 140
Cly =o'/ ¢f§/2(7r;g§/g)7 B7)
where
1
qQ = 7 (liey + leez), s =uz1€1 + x260. (B8)

&,, is the incomplete gamma function and the superscript ‘reg’ represents the regular
part at 3 = 0.

To calculate the derivatives appearing in (102) we need to evaluate the following
derivatives:

—1)Bn—m)/2 — ! (n+m)/2
n—m _ —1/2 ( 1) (TL m) ™
05 " AmCh = 2mp ; (n—m)/2)! <E>

m(r —rt)?

g

X ¢(n+m—1)/2 ( > le Cos mel’ (B 9)

li
057" A, Cr = Z 2] cos mBg e 2T (=2 )" (— )™
1

5 (n—1—m)!
! W@(mmw/z(mﬁ% (B10)

_ |
ACry = o2 (—” ! B11)

n/2
o ) (n/2)/((n —1)/2)’
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where R; and 6, are the polar representation of the projection of the vector r — r;
on the plane z3 = 0, and 0, is the polar angle of the vector q;. We further need
the expressions for 95~ ™ A,, operating on C; and Cfy, which are essentially the same
as above except that the cosine terms are replaced by sines. Further, the following
relations are made use of:

a§n+k)7(l+m)AlAm _ 6§n+k>_(l+m)Al+m + (_Tn)7ma§n+lc)*(l7m)Alim7 I >m

T . S TR

) 2
B 5,5, ~ :
BRI A (=) AT A1 g

Also we have

ag+k—(l+m)AlAm _ *8§n+k)_(l+7n)ﬂl+m + (_m)fmaén—i—k)f(lfm)Al_m’ l 2 m.
(B14)

The above expressions for the derivatives are following the second method in San-
gani & Behl (1989). The constant o is arbitrary and arises from the application of
Ewald’s theta transform (Hasimoto 1959). It provides a convenient way of checking
the numerical program by demanding invariance of the results upon changing o. To
find the regular part of the derivatives of ®(r®) in equation (102), we recognize that
the derivatives of the regular part are regular while the derivatives of the singular
part are singular. The singular part of ¥ is contained in C} when this quantity is
evaluated at zero and is the monopole term (~ 1/r) corresponding to that boss. It
can be easily subtracted out of the gamma function.

To calculate the far-field effect of having the bosses on the plane we need the
limit of of ¥(r) as x3 — oo and we recognize that the terms involving ¢, will not
contribute in this limit. The other term in equation (B 1), however, gives a non-zero
contribution since

83|.’L‘3‘ :H(LL'3) —H(—.’L‘3), (B 15)
where H is the Heaviside function. Noting also that Ag = 2, we obtain from (90)
A L&
O(r) = w5 — 3 > A (B16)
a=1
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