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Rheology of an emulsion of viscoelastic drops in steady shear
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bstract

Steady shear rheology of a dilute emulsion with viscoelastic inclusions is numerically investigated using direct numerical simulations. Batchelor’s
ormulation for rheology of a viscous emulsion is extended for a viscoelastic system. Viscoelasticity is modeled using the Oldroyd-B constitutive
quation. A front-tracking finite difference code is used to numerically determine the drop shape, and solve for the velocity and stress fields. The
ffective stress of the viscoelastic emulsion has three different components due to interfacial tension, viscosity difference (not considered here) and
he drop phase viscoelasticity. The interfacial contributions – first and second normal stress differences and shear stresses – vary with Capillary
umber in a manner similar to those of a Newtonian system. However the shear viscosity decreases with viscoelasticity at low Capillary numbers,
nd increases at high Capillary numbers. The first normal stress difference due to interfacial contribution decreases with increasing drop phase
iscoelasticity. The first normal stress difference due to the drop phase viscoelasticity is found to have a complex dependence on Capillary and

eborah numbers, in contrast with the linear mixing rule. Drop phase viscoelasticity does not contribute significantly to effective shear viscosity
f the emulsion. The total first normal stress difference shows an increase with drop phase viscoelasticity at high Capillary numbers. However at
ow Capillary numbers, a non-monotonic behavior is observed. The results are explained by examining the stress field and the drop shape.

2007 Elsevier B.V. All rights reserved.
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. Introduction

For the synthesis of emulsions with desirable macroscopic
roperties, it is imperative that we understand the relationship
etween its ‘microstructure’ and rheological properties [1]. The
arliest attempts to relate the rheology with microstructures are
ue to Einstein [2,3] and Taylor [4], who determined the effec-
ive viscosity for dilute suspensions and emulsions, respectively.
ldroyd [5,6] showed that elastic properties in dilute emulsions
ith Newtonian components arises as a result of the interfacial

ension. Schowalter et al. [7] explicitly demonstrated, by per-
orming a small deformation analysis of a single drop, that in
dilute emulsion of such drops there exist a positive first and
negative second normal stress differences both quadratic in

hear rate, i.e. N1, N2 ∝ γ̇2. Choi and Schowalter [8] extended
he analysis to a semi-dilute emulsions with Newtonian compo-

ents.

Batchelor [9] rigorously developed a theory for the stress in
homogeneous emulsion. It predicts that the effective stress in
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Newtonian emulsion contains two elements—the component
ontribution due to the difference in viscosity between the two
hases and the interfacial contribution due to the surface tension
t the interface between the two phases. Batchelor expressed the
xcess stress in terms of an interface tensor [10,11]. Given the
ispersed phase morphology, the theory allows computation of
oth transient and steady rheology of an emulsion.

For droplet type morphologies in a dilute emulsion with New-
onian components, there has been significant effort to describe
he evolution of a drop, assuming an ellipsoidal shaped drop
escribed by a second-order phenomenological tensor [12–18].
sing the model of [15] Jansseune et al. [19,20] related the rhe-
logy with the droplet orientation angle, which in turn is related
o the Capillary number. They proposed a method of measuring
roplet size distribution from rheology using such relations and
pplied it to PIB/PDMS system. The transient emulsion rheol-
gy for the same system was also investigated using the droplet
odel [20].
In a concentrated emulsion, droplets can undergo large
eformation, breakup (for Capillary number Ca > Cacrit) and
oalescence, and the final morphology becomes quite com-
licated. To investigate such a complex emulsion, Doi and
hta [21] proposed a simple phenomenological model for the
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mailto:sarkar@me.udel.edu
dx.doi.org/10.1016/j.jnnfm.2007.09.003
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is the solvent viscosity. Shear flow of an Oldroyd-B fluid gives
rise to a first normal stress difference, N1 proportional to the
square of the shear rate (γ̇). Non-Newtonian rheology arises
because of an anisotropic contribution from the deformed drop
0 N. Aggarwal, K. Sarkar / J. Non-Ne

volution of the Batchelor’s interface tensor, and predicted a
inear scaling for both shear (σ12 ∝ γ̇) and the first normal
tresses (N1 ∝ |γ̇|) (in contrast to N1 ∝ γ̇2 more commonly
bserved and predicted by other theories such as [8]). The rea-
on for the anomalous scaling is that the droplet size instead of
eing fixed as in other theories, is determined dynamically as

1/γ̇ , by the breakup and coalescence. Doi–Ohta scalings have
een observed experimentally for a variety of systems [22–24]
ncluding systems with viscoelastic components, when excess
tress contribution from the interface is isolated by using a lin-
ar mixing rule for the viscoelastic component contributions
22,25]. Other similar interface theories [26–29] with compo-
ent to incorporate length scales of individual droplets in the
heory [30–32] have been developed.

Blends with non-Newtonian components, however, have not
een studied in much detail. Palierne [33,34] studied emulsions
f linearly viscoelastic components and developed a model for
he bulk modulus at arbitrary concentrations of spherical inclu-
ions with interfacial tension. The model successfully described
heological behavior of molten polymers in oscillatory flows at
igh and low frequencies [24,35,36]. Bousmina [37] reworked
erner’s [38] model by including the effect of interfacial ten-

ion as an additive modulus (=surface tension/radius) to the total
lastic modulus of the inclusion, to describe rheology of linearly
iscoelastic emulsions. Recently, Yu et al. [39] developed a small
rop deformation theory for viscoelastic systems and extended
atchelor’s formulation to describe the rheology of blends with

inearly viscoelastic components.
It should also be noted that for the experimental studies men-

ioned above, the viscoelastic component contributions were
eglected [19,23,24], or estimated using linear mixing rule
20,22,25,40]. It therefore becomes important to investigate the
alidity of such assumption with detailed measurement or com-
utation of component contributions.

In this paper we investigate the steady shear rheological
ehavior of an emulsion of non-Newtonian inclusions in a
ewtonian matrix, using an extension of Batchelor’s stress for-
ulation [9]. We explicitly compute the component and the

nterface contributions from the simulated drop shape and vis-
ous and viscoelastic stress fields. We restrict ourselves to the
ilute case where the droplet interactions can be neglected so
hat we can use a single drop simulation to compute the emul-
ion rheology. We have recently completed such an investigation
f an Oldroyd-B drop deforming in a Newtonian matrix in steady
hear [42] using the front-tracking method [41–43]. For other
ecent viscoelastic drop deformation studies we refer the inter-
sted reader to [42,44–48] and to the references in Aggarwal
nd Sarkar [42].

The ability of the front-tracking method to accurately
escribe a moving interface is critical for determining the interfa-
ial rheological response. Furthermore, the explicit computation
f the viscous and the viscoelastic stress field allows direct eval-
ation of the component contributions for the first time. We

hould mention that the numerical method can be extended to
oncentrated emulsions albeit at a significantly larger compu-
ational cost. Recently, a similar computational technique was
sed to investigate the non-Newtonian rheology of a dilute emul-
ian Fluid Mech. 150 (2008) 19–31

ion with viscous components in an oscillating extensional flow
49–51] and a steady shear flow with finite inertia [52]. Note
hat for purely viscous emulsions, numerical computations have
een performed using boundary element method by a number
f groups [40,53,54]. However, for viscoelastic emulsions such
omputation has not been previously undertaken.

. Problem formulation

.1. Governing equations

The single drop problem is described in detail by Aggar-
al and Sarkar [42]. The incompressible flow is governed by

he momentum and mass conservation equations in the entire
omain Ω, consisting of the matrix (continuous) phase Ωc and
he drop (dispersed) phase Ωd (Fig. 1):

∂(ρu)

∂t
+ ∇ · (ρuu) = −

∫
∂B

dxB �nΓδ(x − xB) + ∇ · τ, (1)

· u = 0. (2)

ere, Γ is the interfacial tension (constant), ∂B represents the
rop surface consisting of points xB, κ is the local curvature, n
s the outward normal, δ(x − xB) is the three-dimensional Dirac-
elta function and � is the total stress given by

= −pI + T + μsD, (3)

here p is the pressure, T is the extra stress (viscoelastic stress)
ue to presence of the polymer, �s is the solvent viscosity and
= (�u)+(�u)T is the strain rate tensor. For the viscoelastic

rop phase, we use the Oldroyd-B constitutive equation for the
xtra stress tensor, having a single relaxation time λ:{
∂T
∂t

+ u · ∇T − (∇u)T − T(∇u)T
}

+ T = μpD, (4)

p is the polymeric viscosity in the Oldroyd-B phase. For λ= 0,
e obtain the Newtonian fluid in the matrix phase. The Oldroyd-
fluid shows a constant shear viscosity μ=μs +μp, where μs
Fig. 1. Schematic of the domain of computation.
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hape as well as the presence of viscoelastic stresses in the drop
hase. We note that the single equation (Eq. (1)) in the whole
omain is mathematically equivalent to the usual two-equation
ormulation with continuity in the shear stress and jump in the
ormal stress due to surface tension (represented by the delta
unction term).

We use the initial drop radius a as a length scale and
nverse strain rate γ̇−1 as a time scale to define the non-
imensional parameters: Reynolds number Re = ρma

2γ̇/μm;
apillary numberCa = (μmaγ̇)/Γ ; Deborah numberDe = λγ̇;
ensity ratio λρ = ρd/ρm (ρd is the drop phase density and ρm is
he matrix phase density); viscosity ratio λμ =μd/μm (μd is the
otal drop viscosity and μm is matrix viscosity). We define, for
he Oldroyd-B drop, β =μpd/μd =μpd/(μsd +μpd), where μsd is
he drop solvent viscosity and μpd is the drop polymeric viscos-
ty. Here we study only the density and viscosity matched system
i.e. λμ = λρ = 1). Also, we study low but finite inertia case with
e = 0.1, because the explicit nature of the code precludes com-
utation of solutions in the exact Stokes limit. β = 0.5 for all our
omputations except when mentioned otherwise.

.2. Bulk stress in an emulsion with viscoelastic inclusions

Following Batchelor [9], the average stress in an emulsion
an be expressed as a volume average:

ave = 1

V

∫
V

σ dV = 1

V

∫
V−ΣV0

σ dV

+ 1

V

∑ ∫
V0

σ dV − Γ

V

∑ ∫
A0

(
nn − I

3

)
dA, (5)

here V is a representative volume of the emulsion, consisting of
dentical droplets of volume V0 and interfacial area A0. The sum-

ation is therefore over individual drops. The last term in the
quation above represents contributions due to the surface ten-
ion at the phase boundaries. For a Newtonian suspending fluid
n the volume V −ΣV0, the average stress can be re-expressed
s

ave = 1

V

∫
V−ΣV0

[−pI + μm(∇u + ∇uT)] dV

+ 1

V

∑ ∫
V0

σ dV − Γ

V

∑ ∫
A0

(
nn − I

3

)
dA. (6)

efining, the bulk gradient tensor in the representative volume:

U + ∇UT = 1

V

∫
V

(∇u + ∇uT) dV (7)

e can re-express the average stress:

ave = 1

V

∫
V−ΣV0

[−pI + μm(∇U + ∇UT)
]

dV

+ 1

V

∑ ∫
V0

σ dV − μm

V

∑ ∫
A0

(un + nu) dA
−Γ
V

∑ ∫
A0

(
nn − I

3

)
dA. (8)

o
c
�
l
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or each of the viscoelastic inclusions with both Newtonian (due
o the solvent viscosity) and extra stress T (due to the polymer)
ontributions:

1

V

∫
V0

σ dV = 1

V

∫
V0

[
−pI+

μsd

V
(∇u + ∇uT) + T

]
dV

= 1

V

∫
V0

− pI dV + μd

V

∫
V0

(un + nu) dA

+ 1

V

∫
V0

(T − μpdD) dV, (9)

here μsd is the solvent viscosity of the dispersed phase. Note
hat the effective viscous part of the polymeric part in T is sub-
racted to separate the pure viscoelastic part. For an emulsion
ith viscoelastic dispersions:

ave = 1

V

∫
V

[−pI + μm(∇U + ∇UT)
]

dV

+ 1

V

∑ ∫
V0

(T − μpdD) dV

+μd − μm

V

∑ ∫
A0

(un + nu) dA

−Γ
V

∑ ∫
A0

(
nn − I

3

)
dA, (10)

r,

ave = −paveI + τave + σexcess, (11)

ave represents an isotropic contribution, �ave =μm(�U +�UT)
epresents the deviatoric stress in the emulsion in absence of the
ispersed phase. σexcess represents the excess stress due to the
resence of the dispersed phase. It has the following separately
dentifiable components:

excess = σel + σvis + σint, (12)

here

el = 1

V

∑ ∫
V0

(T − μpdD) dV, (13)

vis = μd − μm

V

∑ ∫
A0

(un + nu) dA, (14)

nd,

int = −Γq, q = 1

V

∑ ∫
A0

(
nn − I

3

)
dA, (15)

el and �vis are the component contributions, the former is a
ontribution due to the viscoelasticity of the drop phase and the
atter the component stress arising due to a difference in the vis-
osities of the phases. �int is the interfacial contribution to the
xcess stress. For a viscosity matched system σvis = 0. In the limit

f the relaxation time of the drop phase λ→ 0, we expect no vis-
oelastic component contribution to the excess stress. Note that
el has been defined in Eq. (13) to achieve the correct Newtonian

imit.
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the number of grid points along the x-direction. The interfa-
cial stresses show N2 convergence. Furthermore, in view of the
dilute emulsion results (19), we present our results in terms of
the contribution from the single drop. Note that all the single
2 N. Aggarwal, K. Sarkar / J. Non-Ne

In a dilute emulsion, droplets do not interact. Stress con-
ribution of each inclusion is independent and therefore can
e expressed in terms of the volume fraction Φ= mV0/V.
hus,

int = −Γq, q = φqd, qd = 1

V0

∫
A0

(nn − I
3

) dA,

σel = φ
1

V0

∫
V0

(T − μpdD) dV. (16)

he non-dimensional stress components are

int = σint

μmγ̇
= φΣint

d , Σint
d = − Γ

μmγ̇

qd = − a

Ca
qd, (17)

el = σel

μmγ̇
= φΣel

d ,

el
d = 1

μmγ̇V0

∫
V0

(T − μpdD) dV. (18)

he non-dimensional excess stresses are given by

excess = φΣexcess
d = Σint +Σel = φ

(
Σint

d +Σel
d

)
. (19)

he constitutive properties of this system in shear flow is entirely
etermined by the effective viscosity μe, first normal stress dif-
erence N1 and second normal stress difference N2. According
o above definitions (subscript d has been dropped from above)
nd from Eq. (11):

μe

μm
= 1 +Σint

12 +Σel
12, (20)

1 = N int
1 +Nel

1 = (Σint
11 −Σint

22 ) + (Σel
11 −Σel

22), (21)

2 = N int
2 +Nel

2 = (Σint
22 −Σint

33 ) + (Σel
22 −Σel

33). (22)

.3. Numerical method

We simulate the single-drop-in-a-shear problem using a
ront-tracking finite difference method. The method is described
n detail in Aggarwal and Sarkar [42]. Here we provide a brief
ketch. We consider a computational domain containing a New-
onian matrix with an initially spherical Oldroyd-B drop (of
nitial radius (a) suspended at its centre. The matrix fluid is sub-
ected to a simple shear flow with shear rate γ̇ . The front-tracking

ethod treats the entire system as a single phase, with mate-
ial properties (density, viscosity and relaxation time) varying
harply in a thin region of width 4�x (�x is the grid spac-
ng) across the interface. The surface tension is represented
s a distributed force over this diffused region by choosing a
mooth representation for the Dirac-Delta function as shown

n Eq. (1). A three-dimensional staggered grid is used for the
ntire domain on which the momentum and the Oldroyd-B equa-
ions are solved. The velocity and stress fields are solved for
y an operator-splitting/projection finite-difference method. We

F
y

ian Fluid Mech. 150 (2008) 19–31

ave developed a new algorithm for viscoelastic constitutive
quation [42,43]. A triangular mesh is used to discretize the
rop surface. This triangular grid is adaptively refined to avoid
xcessive mesh distortion. The velocity from the regular grid is
nterpolated to the triangular grid for front advection. We use
n explicit method, which suffers from severe restrictions at low
eynolds numbers. To overcome these difficulties we use an ADI
ethod.
The triangular mesh at the drop surface enables us to compute

he excess interfacial stress using Eq. (15). In our formulation,
he viscoelastic contribution to the excess stress is in the form of
volume integral of viscoelastic stress T [Eq. (18)]. We simply
se node values in each cell multiplied by the cell volume to
ompute the integral as a Riemann sum. Note that we calculate
nd plot only the single drop contributions (19) to the excess
tress. Convergence in these stress values with grid refinement
as been thoroughly checked. We present our results in the next
ection.

. Results

We have used an initial drop radius α, box size of Lx/a = 10,
y/a = 10 and Lz/a = 5 (Fig. 1) and a grid resolution of
6 × 96 × 48 for our steady shear computations. Convergence
nd box size independence have been carefully established for
he rheological contributions calculated in this study. In Fig. 2,
e show convergence of the individual stress components with
rid refinement for parameter values Ca = 0.3 and De = 2. The
rror in each stress component is measured relative to and
caled with the value Σ128 at 128 × 128 × 64 resolution; N is
ig. 2. Convergence of stresses. N is the number of grid points in the x- and
-direction.
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rop excess stress components presented here have been nor-
alized with μmγ̇ as per Eqs. (17) and (18). As we mentioned

efore, we drop the subscript d representative of the single drop
ature of these terms.

.1. Interfacial stresses

First, we examine the interfacial contributions to the effective
tress in the emulsion. Note that the interfacial part is com-
letely determined by the drop shape. Assuming an ellipsoidal
rop shape, the interfacial stress contributions have the following

orrelation with the drop morphology [19]:

int
1 = − a

CaV0

∫
A0

(n2
1′ − n2

2′ ) cos 2θ dA, (23)

ig. 3. (a) Interfacial shear stress variations with Ca. (b) Interfacial shear stress
ariations with De.

v
w
s
s

F
f

ian Fluid Mech. 150 (2008) 19–31 23

int
12 = − a

CaV0

∫
A0

(n2
1′ − n2

2′ )
sin 2θ

2
dA. (24)

herefore,

N int
1

Σint
12

= 2 cot(2θ), (25)

here θ is the orientation of the drop with the flow direc-
ion, (n1′ , n2′ ) are components of normal n to the interface,
n a Cartesian coordinate system coinciding with the major and

inor axes of the ellipsoid.
In Fig. 3a, we plot the interfacial contributions to the shear
iscosity as a function of the Capillary number. An emulsion
ith purely viscous components shows shear thinning at high

hear rates. Our numerical simulation for De = 0 predicts the
ame, i.e. the shear viscosity decreases with Capillary number.

ig. 4. (a) Variation of interfacial normal stress with Ca. (b)Variation of inter-
acial normal stress with De.
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or comparison, we also plot few analytical results. The small

eformation theory of Choi and Schowalter (CS) [8]:

CS
12 = μCS

e

μ
= 5λ+ 2

2(λ+ 1)
φ
λ=1= 7

4
φ

p
a
e
t

ig. 5. Plots of viscoelastic stress T p
xx − T

p
yy (left column) and μp(Dxx −Dyy) (right
ian Fluid Mech. 150 (2008) 19–31
redicts a constant shear viscosity because it does not take into
ccount higher order deformation of the drop. Based on Grmela
t al.’s [13] morphological tensor model, Yu et al. [17] described
he shear thinning of a viscous emulsion:

column) in the central flow plane for De = 0.1, 0.5, 1.0 and 2.0 at Ca = 0.2.
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F astic normal stress variation with De. (c) Log–Log plot of viscoelastic normal stress
v ns.

a

T
p
t
s
d

ig. 6. (a) Viscoelastic first normal stress variation with Ca. (b) Plot of viscoel
ariation with De. (d) Equation describing viscoelastic normal stress contributio

ΣGBP
12 = μGBP

e

μ
= 4(2λ+ 3)

25

f1f
2
2

Ca2 + f 2
1

φ

= 4(2λ+ 3)

25

f 2
2

f1(Z2 + 1)
φ
λ=1= 7

4

1

Z2 + 1
φ,

f1 = 40(λ+ 1)

(2λ+ 3)(19λ+ 16)
= Ca

Z

λ=1= 16

35
,

f2 = 5

2λ+ 3
λ=1= 1,

nd Z = (19λ+ 16)(2λ+ 3)

40(λ+ 1)
Ca

λ=1= 35

16

1

k
.

he small disparity between our simulation and their analytical

rediction is due to the finite amount of inertia (Re = 0.1) and
he finite deformation in our calculation. The change in the shear
tress with De is however small. For small Ca, the shear viscosity
ecreases with increased viscoelasticity, but for larger Ca, it Fig. 7. Variation of viscoelastic shear stress with Ca.
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ncreases. This can be better appreciated from Fig. 3b, where

e plot the interfacial contribution to shear viscosity plotted

s a function of De for different Ca. From Eqs. (23) and (24),
e see that the stresses are governed by the deformation (n2

1′ −
2
2′ ) and the angle θ. Aggarwal and Sarkar [42] showed that

i
v
D
t

Fig. 8. Plots of viscoelastic stress T p
xy (left column) and μpDxy (right colum
ian Fluid Mech. 150 (2008) 19–31

t a fixed Ca, deformation decreases, and the orientation angle

ncreases (towards 45◦) with increased De. In Fig. 3b, the shear
iscosity contribution (24) shows non-monotonic change with
e due to decrease in deformation and a competing increase due

o increased θ.

n) in the central flow plane for De = 0.1, 0.5, 1.0 and 2.0 at Ca = 0.2.
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which translates in our case of a Newtonian matrix asN1 =
φψd

1 γ̇
2, where φ is the volume fraction, ψd

1 is the first normal
stress coefficient (ψ1 = 2μpλ for an Oldroyd-B fluid in simple
shear), and γ̇ is the imposed shear rate. Note that in our study we
N. Aggarwal, K. Sarkar / J. Non-Ne

In Fig. 4a, we plot the interfacial contribution to the first
nd second normal stresses N int

1 and N int
2 , as functions of Ca.

ormal stresses arise due to the anisotropy and orientation of the
nterface. We see an increase inN int

1 with Ca.N int
2 also increases

n magnitude linearly with Ca. The increase in N int
1 with Ca in

ig. 4a can be attributed to an increased drop deformation and
ts progressive alignment with the flow direction. N int

1 goes to
ero for Ca = 0 at inclination angle θ = 45◦. For a fixed Ca value,
e see thatN int

1 decreases with De. This is consistent since drop
iscoelasticity inhibits drop deformation as well as orients the
rop along the strain-rate (θ = 45◦) direction [42,48]. The change
n N int

2 with De is however very small.
To elucidate the effect of De, we present in Fig. 4b, a plot

f N int
1 vs. De (N int

1 has been scaled with its value for De = 0
o accommodate both Ca values). We also present the drop
eformation parameter D = (L − B)/(L + B) (due to Taylor [4])
ormalized by its viscous value varying with De for the same Ca
alues from Aggarwal and Sarkar [42]. The plot clearly shows
decrease in N int

1 with increasing drop viscoelasticity. It can be
xplained by noting that the drop viscoelasticity reduces defor-
ation and reduces the orientation (increases θ) of the droplet

long the flow direction [Eq. (25)]. The first normal stress shows
n exponential decay. It can be explained by noting that the
eduction in drop deformation has also been observed to show
aturation i.e. there is a maximal contribution of drop elas-
icity in inhibition of drop deformation [42,55]. For Ca = 0.3,
lthough the Dst ∼ De curve shows slight non-monotonicity, the

int
1 ∼ De monotonically decreases. The effect of the orienta-

ion angle dominates the change here.

.2. Viscoelastic stresses

In contrast to the interfacial contribution, the viscoelastic con-
ribution is an integral of the difference of two terms –, Txx − Tyy

nd μp(Dxx − Dyy) –, over the drop volume [see Eq. (18)]. In
ig. 5, we plot these two fields over the central plane of the drop
fter the drop has reached a steady state for various De values.
or very small value of De = 0.1, the two fields are expectedly
lmost equal, giving rise to a negligible first normal stress. But
ith increasing De, the difference becomes prominent leading

o an enhanced viscoelastic first normal stress Nel
1 . In Fig. 6a,

e plotNel
1 in the emulsion, varying with Ca. Non-dimensional

el
1 increases linearly with Ca (the slope increases with De).
he normal stress contributions vanish for De → 0. However,
e do see a finite Nel

1 in the limit Ca → 0, in the limit of an
ndeformed spherical drop because of the viscoelastic stress in
he flow inside. We plot in Fig. 6b, Nel

1 varying with De for
ifferent Ca. Fig. 6c shows the same in log plot to demonstrate
el
1 ∼ De for up to De ∼ O(1).
In view of the above observations:

el
1 ∼ f1(De) + f2(De)Ca, Nel

1 ∼ g1(Ca)De. (26)
e fit the data forNel
1 in the range of small Ca and De (Ca ≤ 0.3

nd De ≤ 0.8) to obtain the equation:

el
1 = 0.0897De+ 1.341CaDe. (27)

F
t
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ig. 6d shows this relation. Noting that the deformation is pro-
ortional to Ca, the second term indicates the viscoelastic normal
tress contribution arising from inside the drop is greater when
he drop deforms. This term indicates a departure from the purely
olume-fraction based linear mixing rule for estimating the nor-
al stresses due to the viscoelasticity of the components, which

s often used in experiments [25,40]. Such a rule does not account
or drop deformation. Using this rule, the component contri-
ution, for the normal stress in its dimensional form, due to
iscoelasticity of the phases is approximated by

el(mix)
1 =φNd

1 + (1 − φ)Nm
1 = φψd

1 γ̇
2 + (1 − φ)ψm

1 γ̇
2 (28)

el(mix)
ig. 9. Primary eigenvalue (a) and eigen-direction (b) of the viscoelastic con-
ribution Σel.
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se only the single drop contribution (i.e. scaled by the volume
raction φ); after nondimensionalizing, the expression becomes

el(mix)
1 = De (note β =μp/μd = 0.5 and λμ =μd/μm = 1.0). Our

imulation enables us to actually compute the component con-
ribution from the stress field. It clearly shows a departure from
he mixing rule. If one considers the dimensional contribu-
ions, the first term in (27) indicates Nel

1 = 0.0897φμmλγ̇
2 =

.179φμpλγ̇
2 = 0.0897φψd

1 γ̇
2. The second term in (27) indi-

ates formally a dimensional contribution Nel
1 ∝ λ|γ̇|3.

We further note the importance of the O(Ca De) term in the
ormal stress (27). While analyzing the effect of viscoelasticity
n the drop response in steady shear [42], we developed a one
imensional model that represents the dominant physics and

xplains the observed scaling of deformation D with De and Ca.
he surrogate for deformation X in this model was assumed to
atisfy:

ˆ â2Ẋ+ σ̂âX+ N̂d
1 â

2X = μ̂â2γ̇, (29)

r
a
t
v

Fig. 10. (a) Variation in interfacial shear stress with β. (b) Variation in interfac
ian Fluid Mech. 150 (2008) 19–31

here the variables with hat are the model variables for their
ctual counterparts (i.e. �μ is the model viscosity, etc.). The terms
n the left represent the viscous, surface tension and first normal
tress contribution, and the term in the right is the stretching force
ue to the imposed shear. We modeled the first normal stress
erm as Nd

1 = μpγ̇
2λ{1 − e−t/λ(1 + t/λ)}, which captured the

ransient behavior and the steady scaling X ∝ Ca(1 −βDe Ca).
learly the first normal stress model having a dependence
n deformation as in (29), is now justified in view of
27).

In Fig. 7, we plot the shear viscosity contributions due to
he drop phase viscoelasticity as a function of Ca. Viscoelas-
icity of the drop phase does not make significant contributions
o the effective shear viscosity of the emulsion, at least in the

ange of Ca < Cacrit. The observed magnitude of these stresses
re negligible in comparison with the interfacial shear stress con-
ributions. Note that due to the definition that we adopted for the
iscoelastic component contribution (18), the shear stress part

ial normal stress vs. β. (c) Variation in viscoelastic normal stress with β.
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s an integral of a difference between the actual polymeric shear
tress T p

xy and the instantaneous viscous stress μpDxy computed
sing the local strain rate. In Fig. 8, we plot them in the cen-
ral flow plane of the drop for several different De and Ca = 0.2.
ote that both T p

xy and μpDxy for each De are on the same color
cale. It is clear that the shear contributions are negligible not due
o a point-wise cancellation. They are different yet the volume
ntegral

∫
V0

(Txy − μpDxy) dV is negligible.
We further investigate the viscoelastic stress contributions by

ooking at the eigenvalues and the eigen-directions of the Σel
d

ensor. In Fig. 9a, we plot the primary eigenvalue Σel
11 and in

ig. 9b we plot the orientation of the primary eigen-direction ϕ

ith reference to the flow direction as a function of De for differ-

nt Ca. We note that the other two eigenvalues (not shown here)
re negligible indicating a strong anisotropy in this tensor. Note
he strong similarity in trend between Σel

11 and Nel
1 shown in

(
v
w

ig. 11. (a) Variation of excess shear stresses with Ca. (b) Variation of excess norma
ith its De = 0 value).
ian Fluid Mech. 150 (2008) 19–31 29

ig. 6b even though the later consists of Cartesian components.
oreover, the dominant eigenvalue is oriented towards the flow

irection (hence Nel
1 > 0). With increasing De the orientation

ith the flow is further enhanced (within 3◦ for De = 3), indicat-
ng that the principal direction is almost in the flow direction.
herefore, the rheological contribution of drop viscoelasticity

s a tensile stress of magnitude Σel
11 (resisting drop deforma-

ion) with negligible contribution to effective emulsion shear
iscosity.

.3. Variation of parameter β
We also investigate the effect of varying parameter β

β =μpd/μd) on the steady shear rheology, while keeping the
iscosity ratio λμ constant (i.e. λμ = 1 for our study). For β = 1.0
e get an Upper Convected Maxwell constitutive equation. An

l stresses with Ca. (c) Variation of excess normal stresses with De (normalized



3 wton

i
v

w
l
S
β

t
d
l
m
I
m
w

t
p
o
l
s
c
p
t
T
c
m
t

4

i
o
i
i
t
t
o
t
i
b
e
v
i
e
w
N

d
v

i
c
fi
t
p
t
s

t
fi
a
l
m
c
i

D
C
t
p
a
s

A

e

R

[

[

[

[

[

[

[

[

0 N. Aggarwal, K. Sarkar / J. Non-Ne

ncrease in β, for constant De, is equivalent to increasing the
iscoelastic contributions in the drop phase.

In Fig. 10a, we plot the variation of the interfacial shear stress
ith β. Σint

12 decreases slightly with β because of the observed
inear decrease in drop deformation with β in Aggarwal and
arkar [42], the effect being more prominent for high values of
. In Fig. 10b, we plot variation of the interfacial contribution

o the first normal stress difference N int
1 with parameter β for

ifferent sets of Ca and De. The stress contribution decreases
inearly, indicative of the linear decrease in steady drop defor-

ation D with β previously noted by Aggarwal and Sarkar [42].
n Fig. 10c, we plot the viscoelastic contributions to the first nor-
al stress difference Nel

1 with varying β. Nel
1 increases linearly

ith β over the entire range of the parameter values as expected.
Finally, in Fig. 11 we plot the total excess shear stress con-

ributions Σexcess
12 and Nexcess

1 due to the dispersed viscoelastic
hase in the emulsion. The effect of drop phase viscoelasticity
n shear viscosity is modest (Fig. 11a). As expected, Nexcess

1 is
inear with Ca (Fig. 11b). The plots for De = 0 and De = 0.5 inter-
ect, indicating the competition between increase in the elastic
omponentNel

1 with De and the decrease in the interfacial com-
onentN int

1 (with De). It is further elucidated in Fig. 11c, where
he excess stress is plotted as a function of De for various Ca.
he stress is normalized by its Newtonian (De = 0) value. The
urves for Ca = 0.1 and Ca = 0.2 shows an increase in excess nor-
al stress with De, but the Ca = 0.3 plot shows a non-monotonic

rend.

. Summary

We have used simulation of single viscoelastic drop dynam-
cs to investigate the rheology of a dilute emulsion consisting
f such drops suspended in a Newtonian matrix. The simulation
s performed using a front-tracking method. The effective stress
n a viscoelastic emulsion consists of three components—due
o the interface, due to dispersed phase viscoelasticity and due
o the difference in viscosities of the two phases. We restrict
urselves to a viscosity matched system. The interfacial con-
ribution is affected by the viscoelasticity and vice versa. The
nterfacial contribution is purely geometric, and therefore can
e explained by the drop response. Shear thinning of a viscous
mulsion is modified by the drop phase viscoelasticity. The shear
iscosity is reduced from its Newtonian value by viscoelastic-
ty for low Ca and enhanced for high Ca due to the competing
ffects of decreased deformation and decreased drop alignment
ith the flow. For the case of purely viscous systems, N int

1 and
int
2 are found to change linearly with the Capillary number. The

rop response decreases the first normal stress with increasing
iscoelasticity.

The component contribution due to drop phase viscoelasticity
s computed directly from the simulated stress field. While not
hanging the shear viscosity substantially, it contributes to the
rst normal stress difference N1 in the emulsion. The viscoelas-
ic contribution manifests as an anisotropic tensile stress in the
rincipal co-ordinate system, that increases linearly in magni-
ude with De [for De ∼ O(1)]. The orientation of this tensile
tress is always less than 45◦ (measured from the flow direc-

[

ian Fluid Mech. 150 (2008) 19–31

ion) and further decreases with increasing viscoelasticity. We
nd that this component contribution Nel

1 has two terms ∝De
nd ∝De Ca. The second term indicates a departure from the
inear mixing rule commonly adopted while analyzing experi-

ents involving viscoelastic phases. Variations in the polymeric
ontributions to the total drop viscosity β, causes a linear change
n Nel

1 with insignificant change in Σel
12.

The overall excess first normal stress shows an increase with
eborah number for low Capillary numbers. However for high
apillary numbers, it shows a non-monotonic behavior due to

he competition between the viscoelastic part and interfacial
arts, in that it first decreases due to decreased drop deformation,
nd finally increases due to increasing viscoelastic component
tress.
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