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Abstract

Steady shear rheology of a dilute emulsion with viscoelastic inclusions is numerically investigated using direct numerical simulations. Batchelor’s
formulation for rheology of a viscous emulsion is extended for a viscoelastic system. Viscoelasticity is modeled using the Oldroyd-B constitutive
equation. A front-tracking finite difference code is used to numerically determine the drop shape, and solve for the velocity and stress fields. The
effective stress of the viscoelastic emulsion has three different components due to interfacial tension, viscosity difference (not considered here) and
the drop phase viscoelasticity. The interfacial contributions — first and second normal stress differences and shear stresses — vary with Capillary
number in a manner similar to those of a Newtonian system. However the shear viscosity decreases with viscoelasticity at low Capillary numbers,
and increases at high Capillary numbers. The first normal stress difference due to interfacial contribution decreases with increasing drop phase
viscoelasticity. The first normal stress difference due to the drop phase viscoelasticity is found to have a complex dependence on Capillary and
Deborah numbers, in contrast with the linear mixing rule. Drop phase viscoelasticity does not contribute significantly to effective shear viscosity
of the emulsion. The total first normal stress difference shows an increase with drop phase viscoelasticity at high Capillary numbers. However at

low Capillary numbers, a non-monotonic behavior is observed. The results are explained by examining the stress field and the drop shape.

© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

For the synthesis of emulsions with desirable macroscopic
properties, it is imperative that we understand the relationship
between its ‘microstructure’ and rheological properties [1]. The
earliest attempts to relate the rheology with microstructures are
due to Einstein [2,3] and Taylor [4], who determined the effec-
tive viscosity for dilute suspensions and emulsions, respectively.
Oldroyd [5,6] showed that elastic properties in dilute emulsions
with Newtonian components arises as a result of the interfacial
tension. Schowalter et al. [7] explicitly demonstrated, by per-
forming a small deformation analysis of a single drop, that in
a dilute emulsion of such drops there exist a positive first and
a negative second normal stress differences both quadratic in
shear rate, i.e. N1, Ny )'/2. Choi and Schowalter [8] extended
the analysis to a semi-dilute emulsions with Newtonian compo-
nents.

Batchelor [9] rigorously developed a theory for the stress in
a homogeneous emulsion. It predicts that the effective stress in
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a Newtonian emulsion contains two elements—the component
contribution due to the difference in viscosity between the two
phases and the interfacial contribution due to the surface tension
at the interface between the two phases. Batchelor expressed the
excess stress in terms of an interface tensor [10,11]. Given the
dispersed phase morphology, the theory allows computation of
both transient and steady rheology of an emulsion.

For droplet type morphologies in a dilute emulsion with New-
tonian components, there has been significant effort to describe
the evolution of a drop, assuming an ellipsoidal shaped drop
described by a second-order phenomenological tensor [12—-18].
Using the model of [15] Jansseune et al. [19,20] related the rhe-
ology with the droplet orientation angle, which in turn is related
to the Capillary number. They proposed a method of measuring
droplet size distribution from rheology using such relations and
applied it to PIB/PDMS system. The transient emulsion rheol-
ogy for the same system was also investigated using the droplet
model [20].

In a concentrated emulsion, droplets can undergo large
deformation, breakup (for Capillary number Ca > Cacr) and
coalescence, and the final morphology becomes quite com-
plicated. To investigate such a complex emulsion, Doi and
Ohta [21] proposed a simple phenomenological model for the
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evolution of the Batchelor’s interface tensor, and predicted a
linear scaling for both shear (012 o y) and the first normal
stresses (N7 o< ||) (in contrast to Ny o< > more commonly
observed and predicted by other theories such as [8]). The rea-
son for the anomalous scaling is that the droplet size instead of
being fixed as in other theories, is determined dynamically as
o 1/y, by the breakup and coalescence. Doi—Ohta scalings have
been observed experimentally for a variety of systems [22-24]
including systems with viscoelastic components, when excess
stress contribution from the interface is isolated by using a lin-
ear mixing rule for the viscoelastic component contributions
[22,25]. Other similar interface theories [26—29] with compo-
nent to incorporate length scales of individual droplets in the
theory [30-32] have been developed.

Blends with non-Newtonian components, however, have not
been studied in much detail. Palierne [33,34] studied emulsions
of linearly viscoelastic components and developed a model for
the bulk modulus at arbitrary concentrations of spherical inclu-
sions with interfacial tension. The model successfully described
rheological behavior of molten polymers in oscillatory flows at
high and low frequencies [24,35,36]. Bousmina [37] reworked
Kerner’s [38] model by including the effect of interfacial ten-
sion as an additive modulus (=surface tension/radius) to the total
elastic modulus of the inclusion, to describe rheology of linearly
viscoelastic emulsions. Recently, Yu et al. [39] developed a small
drop deformation theory for viscoelastic systems and extended
Batchelor’s formulation to describe the rheology of blends with
linearly viscoelastic components.

It should also be noted that for the experimental studies men-
tioned above, the viscoelastic component contributions were
neglected [19,23,24], or estimated using linear mixing rule
[20,22,25,40]. It therefore becomes important to investigate the
validity of such assumption with detailed measurement or com-
putation of component contributions.

In this paper we investigate the steady shear rheological
behavior of an emulsion of non-Newtonian inclusions in a
Newtonian matrix, using an extension of Batchelor’s stress for-
mulation [9]. We explicitly compute the component and the
interface contributions from the simulated drop shape and vis-
cous and viscoelastic stress fields. We restrict ourselves to the
dilute case where the droplet interactions can be neglected so
that we can use a single drop simulation to compute the emul-
sion rheology. We have recently completed such an investigation
of an Oldroyd-B drop deforming in a Newtonian matrix in steady
shear [42] using the front-tracking method [41-43]. For other
recent viscoelastic drop deformation studies we refer the inter-
ested reader to [42,44—48] and to the references in Aggarwal
and Sarkar [42].

The ability of the front-tracking method to accurately
describe amoving interface is critical for determining the interfa-
cial rheological response. Furthermore, the explicit computation
of the viscous and the viscoelastic stress field allows direct eval-
uation of the component contributions for the first time. We
should mention that the numerical method can be extended to
concentrated emulsions albeit at a significantly larger compu-
tational cost. Recently, a similar computational technique was
used to investigate the non-Newtonian rheology of a dilute emul-

sion with viscous components in an oscillating extensional flow
[49-51] and a steady shear flow with finite inertia [52]. Note
that for purely viscous emulsions, numerical computations have
been performed using boundary element method by a number
of groups [40,53,54]. However, for viscoelastic emulsions such
computation has not been previously undertaken.

2. Problem formulation
2.1. Governing equations

The single drop problem is described in detail by Aggar-
wal and Sarkar [42]. The incompressible flow is governed by
the momentum and mass conservation equations in the entire
domain £2, consisting of the matrix (continuous) phase §2. and
the drop (dispersed) phase §24 (Fig. 1):

a(pw) _ /
+ V. (puu) = — dxgpkn/S5(x —xg)+ V-1, (1)

ot B
V.-u=0. 2)

Here, I' is the interfacial tension (constant), 0B represents the
drop surface consisting of points X, k is the local curvature, n
is the outward normal, §(x — xp) is the three-dimensional Dirac-
Delta function and 7 is the total stress given by

r=—pl+ T+ u,D, 3)

where p is the pressure, T is the extra stress (viscoelastic stress)
due to presence of the polymer, pg is the solvent viscosity and
D=(vw+(vVw)T is the strain rate tensor. For the viscoelastic
drop phase, we use the Oldroyd-B constitutive equation for the
extra stress tensor, having a single relaxation time A:

9T .
1y 5, U VT = (VT = T(Vw)' t +T = D, )

Mp is the polymeric viscosity in the Oldroyd-B phase. For A =0,
we obtain the Newtonian fluid in the matrix phase. The Oldroyd-
B fluid shows a constant shear viscosity u = s + ip, where pg
is the solvent viscosity. Shear flow of an Oldroyd-B fluid gives
rise to a first normal stress difference, N| proportional to the
square of the shear rate (7). Non-Newtonian rheology arises
because of an anisotropic contribution from the deformed drop
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Fig. 1. Schematic of the domain of computation.
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shape as well as the presence of viscoelastic stresses in the drop
phase. We note that the single equation (Eq. (1)) in the whole
domain is mathematically equivalent to the usual two-equation
formulation with continuity in the shear stress and jump in the
normal stress due to surface tension (represented by the delta
function term).

We use the initial drop radius a as a length scale and
inverse strain rate ' as a time scale to define the non-
dimensional parameters: Reynolds number Re = pma®y/im;
Capillary number Ca = (umay)/I"; Deborah number De = Ay;
density ratio A, = 04/pm (pq is the drop phase density and p, is
the matrix phase density); viscosity ratio A, = pa/ptm (iLq is the
total drop viscosity and pn, is matrix viscosity). We define, for
the Oldroyd-B drop, 8= upa/ttd = ppd/(thsd + tpd), where igq is
the drop solvent viscosity and (4 is the drop polymeric viscos-
ity. Here we study only the density and viscosity matched system
(i.e. A=A, =1). Also, we study low but finite inertia case with
Re=0.1, because the explicit nature of the code precludes com-
putation of solutions in the exact Stokes limit. 8=0.5 for all our
computations except when mentioned otherwise.

2.2. Bulk stress in an emulsion with viscoelastic inclusions

Following Batchelor [9], the average stress in an emulsion
can be expressed as a volume average:

1 1
aa"ez—/ade—/ odV
Vv Viv_sv,

1 r I
+VZ/VOadV—VZ/AO <nn—3> dA, (5

where Vis arepresentative volume of the emulsion, consisting of
identical droplets of volume V() and interfacial area Ag. The sum-
mation is therefore over individual drops. The last term in the
equation above represents contributions due to the surface ten-
sion at the phase boundaries. For a Newtonian suspending fluid
in the volume V — X'V, the average stress can be re-expressed
as

1
o = v [—pl + pm(Vu + Vah]dv
V-XVy

1 r I
+= / odV — — / <nn—> dA. (6)
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Defining, the bulk gradient tensor in the representative volume:
T_ 1 T
vU + VU =7 (Vu+ Vu')dv @)
1%
we can re-express the average stress:
1

oV = v [—pI + um(VU + VUD)] dV
V-XVy
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For each of the viscoelastic inclusions with both Newtonian (due
to the solvent viscosity) and extra stress T (due to the polymer)
contributions:

1/ 1 Msd T
— [ edv=— [—pI+—(Vu+Vu )+T] dv
v VI %

=i/ —pldv + X [ (un + nuyda
v /v, vV v,

1
+- | (T—ppD)dV, ®
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where [14q is the solvent viscosity of the dispersed phase. Note
that the effective viscous part of the polymeric part in T is sub-
tracted to separate the pure viscoelastic part. For an emulsion
with viscoelastic dispersions:

1
o = V/ [—pI + um(VU + VUT)} dv
Vv
1
+— / (T — ppgD)dV
VZ Vo P
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r I
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or,
O.QVC — _paveI + .[ave + O.CXCCSS7 (1 1)
P represents an isotropic contribution, 72¢ =y, (VU + vUT)

represents the deviatoric stress in the emulsion in absence of the
dispersed phase. 0®*“®** represents the excess stress due to the
presence of the dispersed phase. It has the following separately
identifiable components:

ogexcess — o.el + Uvis + o_int’ (12)
where
1
ol = v Z/V (T — pupaD) v, (13)
0
o = @Z (un + nu) dA, (14)
Ag
and,

. 1 1
O'mt = _Fqs q= VZ/A (nn_ 3) dAv (15)
0

¢! and ¢ are the component contributions, the former is a
contribution due to the viscoelasticity of the drop phase and the
latter the component stress arising due to a difference in the vis-
cosities of the phases. o™ is the interfacial contribution to the
excess stress. For a viscosity matched system o = 0. In the limit
of the relaxation time of the drop phase A — 0, we expect no vis-
coelastic component contribution to the excess stress. Note that
! has been defined in Eq. (13) to achieve the correct Newtonian

limit.
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In a dilute emulsion, droplets do not interact. Stress con-
tribution of each inclusion is independent and therefore can
be expressed in terms of the volume fraction @=mVy/V.
Thus,

o™ =-Iq, a=¢qs, = (nn — f)dA
Vo Ao
1
=¢— [ (T — ppaD)dV. (16)
Vo Jv,
The non-dimensional stress components are
Eint — aint =¢ Emt Emt r
Umy H«my
== (7)
qq = T Ca e R
Eel — Gel — ¢ECI
HmY
1
5= | @ umav (18)
T umyVo v, ?

The non-dimensional excess stresses are given by
yoexcess _ (f)ESXCCSS — Eint + Eel =¢ (E(iint + Esl) ) (19)

The constitutive properties of this system in shear flow is entirely
determined by the effective viscosity e, first normal stress dif-
ference N and second normal stress difference N>. According
to above definitions (subscript d has been dropped from above)
and from Eq. (11):

B 1y oy 5, (20)

Mm

1\/1 — N%nt_i_ — (Eln[ 1nt)+(2 312)7 (21)

N — Nln[ + Nel — (Emt 1nt) + (E 2§13) (22)

2.3. Numerical method

We simulate the single-drop-in-a-shear problem using a
front-tracking finite difference method. The method is described
in detail in Aggarwal and Sarkar [42]. Here we provide a brief
sketch. We consider a computational domain containing a New-
tonian matrix with an initially spherical Oldroyd-B drop (of
initial radius (a) suspended at its centre. The matrix fluid is sub-
jected to a simple shear flow with shear rate . The front-tracking
method treats the entire system as a single phase, with mate-
rial properties (density, viscosity and relaxation time) varying
sharply in a thin region of width 4Ax (Ax is the grid spac-
ing) across the interface. The surface tension is represented
as a distributed force over this diffused region by choosing a
smooth representation for the Dirac-Delta function as shown
in Eq. (1). A three-dimensional staggered grid is used for the
entire domain on which the momentum and the Oldroyd-B equa-
tions are solved. The velocity and stress fields are solved for
by an operator-splitting/projection finite-difference method. We

have developed a new algorithm for viscoelastic constitutive
equation [42,43]. A triangular mesh is used to discretize the
drop surface. This triangular grid is adaptively refined to avoid
excessive mesh distortion. The velocity from the regular grid is
interpolated to the triangular grid for front advection. We use
an explicit method, which suffers from severe restrictions at low
Reynolds numbers. To overcome these difficulties we use an ADI
method.

The triangular mesh at the drop surface enables us to compute
the excess interfacial stress using Eq. (15). In our formulation,
the viscoelastic contribution to the excess stress is in the form of
a volume integral of viscoelastic stress T [Eq. (18)]. We simply
use node values in each cell multiplied by the cell volume to
compute the integral as a Riemann sum. Note that we calculate
and plot only the single drop contributions (19) to the excess
stress. Convergence in these stress values with grid refinement
has been thoroughly checked. We present our results in the next
section.

3. Results

We have used an initial drop radius «, box size of Ly/a=10,
Ly/a=10 and L;a=5 (Fig. 1) and a grid resolution of
96 x 96 x 48 for our steady shear computations. Convergence
and box size independence have been carefully established for
the rheological contributions calculated in this study. In Fig. 2,
we show convergence of the individual stress components with
grid refinement for parameter values Ca=0.3 and De=2. The
error in each stress component is measured relative to and
scaled with the value X128 at 128 x 128 x 64 resolution; N is
the number of grid points along the x-direction. The interfa-
cial stresses show N? convergence. Furthermore, in view of the
dilute emulsion results (19), we present our results in terms of
the contribution from the single drop. Note that all the single
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Fig. 2. Convergence of stresses. N is the number of grid points in the x- and
y-direction.



N. Aggarwal, K. Sarkar / J. Non-Newtonian Fluid Mech. 150 (2008) 19-31 23

drop excess stress components presented here have been nor-
malized with uny as per Egs. (17) and (18). As we mentioned
before, we drop the subscript d representative of the single drop
nature of these terms.

3.1. Interfacial stresses

First, we examine the interfacial contributions to the effective
stress in the emulsion. Note that the interfacial part is com-
pletely determined by the drop shape. Assuming an ellipsoidal
drop shape, the interfacial stress contributions have the following
correlation with the drop morphology [19]:

int __

AT Ao(n%, — n3)cos20dA, (23)

int

W
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Fig. 3. (a) Interfacial shear stress variations with Ca. (b) Interfacial shear stress
variations with De.

. in 20
g4 / (n — n2) = dA. 24)
Ca V() Ao 2
Therefore,
}nt
i = 2 cot(20), (25)

where 6 is the orientation of the drop with the flow direc-
tion, (ny/, ny) are components of normal n to the interface,
in a Cartesian coordinate system coinciding with the major and
minor axes of the ellipsoid.

In Fig. 3a, we plot the interfacial contributions to the shear
viscosity as a function of the Capillary number. An emulsion
with purely viscous components shows shear thinning at high
shear rates. Our numerical simulation for De =0 predicts the
same, i.e. the shear viscosity decreases with Capillary number.
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Fig. 4. (a) Variation of interfacial normal stress with Ca. (b)Variation of inter-
facial normal stress with De.
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For comparison, we also plot few analytical results. The small
deformation theory of Choi and Schowalter (CS) [8]:

uSS  5h+2
T 20041

)”El 7

¢_Z¢

cs _
X =

0.2310

0.1302
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-0.6433
-0.8204
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predicts a constant shear viscosity because it does not take into
account higher order deformation of the drop. Based on Grmela
et al.’s [13] morphological tensor model, Yu et al. [17] described
the shear thinning of a viscous emulsion:

Fig. 5. Plots of viscoelastic stress TP — T}},’y (left column) and pp(Dyx — D)y) (right column) in the central flow plane for De =0.1, 0.5, 1.0 and 2.0 at Ca=0.2.
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Fig. 6. (a) Viscoelastic first normal stress variation with Ca. (b) Plot of viscoelastic normal stress variation with De. (c) Log—Log plot of viscoelastic normal stress

variation with De. (d) Equation describing viscoelastic normal stress contributions.
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The small disparity between our simulation and their analytical
prediction is due to the finite amount of inertia (Re=0.1) and
the finite deformation in our calculation. The change in the shear
stress with De is however small. For small Ca, the shear viscosity
decreases with increased viscoelasticity, but for larger Ca, it
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Fig. 7. Variation of viscoelastic shear stress with Ca.
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increases. This can be better appreciated from Fig. 3b, where
we plot the interfacial contribution to shear viscosity plotted
as a function of De for different Ca. From Egs. (23) and (24),
we see that the stresses are governed by the deformation (n%, —
n%,) and the angle 6. Aggarwal and Sarkar [42] showed that
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at a fixed Ca, deformation decreases, and the orientation angle
increases (towards 45°) with increased De. In Fig. 3b, the shear
viscosity contribution (24) shows non-monotonic change with
De due to decrease in deformation and a competing increase due
to increased 6.

o

Fig. 8. Plots of viscoelastic stress Tfy (left column) and pp D,y (right column) in the central flow plane for De =0.1, 0.5, 1.0 and 2.0 at Ca=0.2.
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In Fig. 4a, we plot the interfacial contribution to the first
and second normal stresses Nim and Nim, as functions of Ca.
Normal stresses arise due to the anisotropy and orientation of the
interface. We see an increase in N }m with Ca. Niznt also increases
in magnitude linearly with Ca. The increase in N ilm with Ca in
Fig. 4a can be attributed to an increased drop deformation and
its progressive alignment with the flow direction. N }m goes to
zero for Ca =0 at inclination angle 0 =45°. For a fixed Ca value,
we see that Ni™ decreases with De. This is consistent since drop
viscoelasticity inhibits drop deformation as well as orients the
drop along the strain-rate (6 =45°) direction [42,48]. The change
in N;“t with De is however very small.

To elucidate the effect of De, we present in Fig. 4b, a plot
of Ni" vs. De (NI has been scaled with its value for De=0
to accommodate both Ca values). We also present the drop
deformation parameter D = (L — B)/(L+ B) (due to Taylor [4])
normalized by its viscous value varying with De for the same Ca
values from Aggarwal and Sarkar [42]. The plot clearly shows
adecrease in N im with increasing drop viscoelasticity. It can be
explained by noting that the drop viscoelasticity reduces defor-
mation and reduces the orientation (increases ) of the droplet
along the flow direction [Eq. (25)]. The first normal stress shows
an exponential decay. It can be explained by noting that the
reduction in drop deformation has also been observed to show
saturation i.e. there is a maximal contribution of drop elas-
ticity in inhibition of drop deformation [42,55]. For Ca=0.3,
although the Dy ~ De curve shows slight non-monotonicity, the
N %“t ~ De monotonically decreases. The effect of the orienta-
tion angle dominates the change here.

3.2. Viscoelastic stresses

In contrast to the interfacial contribution, the viscoelastic con-
tribution is an integral of the difference of two terms —, Ty — Ty
and pp(Dyx — Dyy) —, over the drop volume [see Eq. (18)]. In
Fig. 5, we plot these two fields over the central plane of the drop
after the drop has reached a steady state for various De values.
For very small value of De =0.1, the two fields are expectedly
almost equal, giving rise to a negligible first normal stress. But
with increasing De, the difference becomes prominent leading
to an enhanced viscoelastic first normal stress N fl. In Fig. 6a,
we plot N fl in the emulsion, varying with Ca. Non-dimensional
N fl increases linearly with Ca (the slope increases with De).
The normal stress contributions vanish for De — 0. However,
we do see a finite N‘fl in the limit Ca — 0, in the limit of an
undeformed spherical drop because of the viscoelastic stress in
the flow inside. We plot in Fig. 6b, Nfl varying with De for
different Ca. Fig. 6¢ shows the same in log plot to demonstrate
Nfl ~ De for up to De ~ O(1).

In view of the above observations:

NS ~ fi(De) + fr(De)Ca, N ~ g\(Ca)De. (26)

We fit the data for N fl in the range of small Ca and De (Ca < 0.3
and De < 0.8) to obtain the equation:

N¢! = 0.0897 De + 1.341 Ca De. (27)

Fig. 6d shows this relation. Noting that the deformation is pro-
portional to Ca, the second term indicates the viscoelastic normal
stress contribution arising from inside the drop is greater when
the drop deforms. This term indicates a departure from the purely
volume-fraction based linear mixing rule for estimating the nor-
mal stresses due to the viscoelasticity of the components, which
is often used in experiments [25,40]. Such arule does not account
for drop deformation. Using this rule, the component contri-
bution, for the normal stress in its dimensional form, due to
viscoelasticity of the phases is approximated by

1(mi . .
NP =gNT + (1 = 9NT = pyiy” + (1 = 9)u'y”  (28)
which translates in our case of a Newtonian matrix as N&' ™ =
(])1#‘11)72, where ¢ is the volume fraction, 1//51 is the first normal
stress coefficient (1 =2upA for an Oldroyd-B fluid in simple
shear), and y is the imposed shear rate. Note that in our study we
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Fig. 9. Primary eigenvalue (a) and eigen-direction (b) of the viscoelastic con-
tribution ¢!,



28 N. Aggarwal, K. Sarkar / J. Non-Newtonian Fluid Mech. 150 (2008) 19-31

use only the single drop contribution (i.e. scaled by the volume
fraction ¢); after nondimensionalizing, the expression becomes
NS — De (note B= pp/pa =0.5and A, = pa/pim = 1.0). Our
simulation enables us to actually compute the component con-
tribution from the stress field. It clearly shows a departure from
the mixing rule. If one considers the dimensional contribu-
tions, the first term in (27) indicates Nf'l = 0.0897¢umk)72 =
0.179¢upr* = 0.0897¢y{%. The second term in (27) indi-
cates formally a dimensional contribution N fl x kl)’/|3.

We further note the importance of the O(Ca De) term in the
normal stress (27). While analyzing the effect of viscoelasticity
on the drop response in steady shear [42], we developed a one
dimensional model that represents the dominant physics and
explains the observed scaling of deformation D with De and Ca.
The surrogate for deformation X in this model was assumed to
satisfy:

pa*X +sax + Nia’x = pa*y, (29)

(a) T T T T I T T T T | T T T | T T T
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int
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where the variables with hat are the model variables for their
actual counterparts (i.e. it is the model viscosity, etc.). The terms
in the left represent the viscous, surface tension and first normal
stress contribution, and the term in the right is the stretching force
due to the imposed shear. We modeled the first normal stress
term as N9 = ,upj/z)»{l —e~"/*(1 4 t/1)}, which captured the
transient behavior and the steady scaling X « Ca(l — B De Ca).
Clearly the first normal stress model having a dependence
on deformation as in (29), is now justified in view of
27).

In Fig. 7, we plot the shear viscosity contributions due to
the drop phase viscoelasticity as a function of Ca. Viscoelas-
ticity of the drop phase does not make significant contributions
to the effective shear viscosity of the emulsion, at least in the
range of Ca < Caci;. The observed magnitude of these stresses
are negligible in comparison with the interfacial shear stress con-
tributions. Note that due to the definition that we adopted for the
viscoelastic component contribution (18), the shear stress part

(b) 2-5" T T | T T T T [ T T T T | T T T T

RS ——=a—— (Ca=0.2 De=0.25

SR Ca=0.2De=10
o ——e—— Ca=0.2 De=2.0

Ca=0.2 De=2.6

Ca=0.3 De=1.0

Ca=0.3De=2.0 -

- —=—— (Ca=0.2 De=0.25
—=a—— (Ca=0.2De=1.0
—=e—— (Ca=0.2 De=2.0
L —=a—— (Ca=0.2De=2.6
----a---- Ca=0.3De=1.0
- ----e---- (Ca=0.3 De=2.0

el
.\\

0.5 .

| R

1

1

1
0 0.

25

1
0

.5

B
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is an integral of a difference between the actual polymeric shear
stress Thy and the instantaneous viscous stress up, Dy, computed
using the local strain rate. In Fig. 8, we plot them in the cen-
tral flow plane of the drop for several different De and Ca=0.2.
Note that both Tfy and ptp Dyy for each De are on the same color
scale. Itis clear that the shear contributions are negligible not due
to a point-wise cancellation. They are different yet the volume
integral fVO(TXy — upDyy)dV is negligible.

We further investigate the viscoelastic stress contributions by
looking at the eigenvalues and the eigen-directions of the Z‘Sl
tensor. In Fig. 9a, we plot the primary eigenvalue E‘fl] and in
Fig. 9b we plot the orientation of the primary eigen-direction ¢
with reference to the flow direction as a function of De for differ-
ent Ca. We note that the other two eigenvalues (not shown here)
are negligible indicating a strong anisotropy in this tensor. Note
the strong similarity in trend between | and N¢' shown in

(@ 27—

excess
2
T

—s—— De=0.0 ]

Fig. 6b even though the later consists of Cartesian components.
Moreover, the dominant eigenvalue is oriented towards the flow
direction (hence N f] >0). With increasing De the orientation
with the flow is further enhanced (within 3° for De = 3), indicat-
ing that the principal direction is almost in the flow direction.
Therefore, the rheological contribution of drop viscoelasticity
is a tensile stress of magnitude 2?11 (resisting drop deforma-
tion) with negligible contribution to effective emulsion shear
viscosity.

3.3. Variation of parameter 3

We also investigate the effect of varying parameter S
(B=pd/1eq) on the steady shear rheology, while keeping the
viscosity ratio A, constant (i.e. A, = 1 for our study). For §=1.0
we get an Upper Convected Maxwell constitutive equation. An
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Fig. 11. (a) Variation of excess shear stresses with Ca. (b) Variation of excess normal stresses with Ca. (c) Variation of excess normal stresses with De (normalized

with its De = 0 value).
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increase in B, for constant De, is equivalent to increasing the
viscoelastic contributions in the drop phase.

In Fig. 10a, we plot the variation of the interfacial shear stress
with . Z“f‘zt decreases slightly with 8 because of the observed
linear decrease in drop deformation with 8 in Aggarwal and
Sarkar [42], the effect being more prominent for high values of
B. In Fig. 10b, we plot variation of the interfacial contribution
to the first normal stress difference N %m with parameter 8 for
different sets of Ca and De. The stress contribution decreases
linearly, indicative of the linear decrease in steady drop defor-
mation D with g previously noted by Aggarwal and Sarkar [42].
In Fig. 10c, we plot the viscoelastic contributions to the first nor-
mal stress difference N fl with varying 8. N fl increases linearly
with B over the entire range of the parameter values as expected.

Finally, in Fig. 11 we plot the total excess shear stress con-
tributions X{3°°*% and N{**** due to the dispersed viscoelastic
phase in the emulsion. The effect of drop phase viscoelasticity
on shear viscosity is modest (Fig. 11a). As expected, N7*°°** is
linear with Ca (Fig. 11b). The plots for De =0 and De =0.5 inter-
sect, indicating the competition between increase in the elastic
component N¢! with De and the decrease in the interfacial com-
ponent N ilm (with De). It is further elucidated in Fig. 11c, where
the excess stress is plotted as a function of De for various Ca.
The stress is normalized by its Newtonian (De =0) value. The
curves for Ca=0.1 and Ca =0.2 shows an increase in excess nor-
mal stress with De, but the Ca = 0.3 plot shows a non-monotonic
trend.

4. Summary

We have used simulation of single viscoelastic drop dynam-
ics to investigate the rheology of a dilute emulsion consisting
of such drops suspended in a Newtonian matrix. The simulation
is performed using a front-tracking method. The effective stress
in a viscoelastic emulsion consists of three components—due
to the interface, due to dispersed phase viscoelasticity and due
to the difference in viscosities of the two phases. We restrict
ourselves to a viscosity matched system. The interfacial con-
tribution is affected by the viscoelasticity and vice versa. The
interfacial contribution is purely geometric, and therefore can
be explained by the drop response. Shear thinning of a viscous
emulsion is modified by the drop phase viscoelasticity. The shear
viscosity is reduced from its Newtonian value by viscoelastic-
ity for low Ca and enhanced for high Ca due to the competing
effects of decreased deformation and decreased drop alignment
with the flow. For the case of purely viscous systems, N %m and
N;“t are found to change linearly with the Capillary number. The
drop response decreases the first normal stress with increasing
viscoelasticity.

The component contribution due to drop phase viscoelasticity
is computed directly from the simulated stress field. While not
changing the shear viscosity substantially, it contributes to the
first normal stress difference N; in the emulsion. The viscoelas-
tic contribution manifests as an anisotropic tensile stress in the
principal co-ordinate system, that increases linearly in magni-
tude with De [for De ~ O(1)]. The orientation of this tensile
stress is always less than 45° (measured from the flow direc-

tion) and further decreases with increasing viscoelasticity. We
find that this component contribution Nfl has two terms ocDe
and o«De Ca. The second term indicates a departure from the
linear mixing rule commonly adopted while analyzing experi-
ments involving viscoelastic phases. Variations in the polymeric
contributions to the total drop viscosity §, causes a linear change
in Nlel with insignificant change in 2‘1’12

The overall excess first normal stress shows an increase with
Deborah number for low Capillary numbers. However for high
Capillary numbers, it shows a non-monotonic behavior due to
the competition between the viscoelastic part and interfacial
parts, in that it first decreases due to decreased drop deformation,
and finally increases due to increasing viscoelastic component
stress.
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