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The shear-induced collective or gradient diffusivity in an emulsion of viscous drops,
specifically as a function of viscosity ratio, was computed using a fully resolved numerical
method. An initially randomly packed layer of viscous drops spreading due to drop-drop
interactions in an imposed shear has been simulated. The collective diffusivity coefficient
was computed using a self-similar solution of the drop concentration profile. We also
obtained the collective diffusivity (the collective diffusivity coefficient multiplied by
the average drop volume fraction), computing the dynamic structure factor from the
simulated drop positions—an analysis typically applied only to homogeneous systems.
The two quantities computed using entirely different methods are in broad agreement,
including their predictions of nonmonotonic variations with increasing capillary number
and viscosity ratio. The computed values were also found to match with past experimental
measurements. The collective diffusivity coefficient computed here, as expected, is 1 order
of magnitude larger than the self-diffusivity coefficient for a dilute emulsion previously
computed using pairwise simulation of viscous drops in shear. The collective diffusivity
coefficient computed here shows a nonmonotonic variation with viscosity ratio, in contrast
to self-diffusivity computed using pairwise computation. The difference might point to an
intrinsic difference in physics underlying the two diffusivities. Alternatively, it also might
arise from drops not reaching equilibrium deformation in the period after one interaction
and before the next—an effect absent in the pairwise simulation used for the computation
of self-diffusivity. We offer a qualitative explanation of the nonmonotonic variation by
relating it to average nonmonotonic drop deformation with increasing viscosity ratio. We
also provide empirical correlations of the collective diffusivity as a function of viscosity
ratio and capillary number.

DOI: 10.1103/PhysRevFluids.4.093603

I. INTRODUCTION

Noncolloidal particles in a sheared suspension or emulsion undergo a diffusive motion due to
shear-induced hydrodynamic interactions between particles [1–5], which can be of great importance
in chemical and biomedical flows. Specifically, for red blood cells (RBCs) in blood vessels at the
physical hematocrit level of ∼45%, such shear-induced diffusion plays a critical role in determining
their interactions and spatial concentrations [6,7]. Recently, we computed collective or gradient
diffusivity in a concentrated viscous emulsion using fully resolved direct numerical simulation for
a viscosity-matched system [8]. In this short article, we extend the analysis to emulsions where
the drop viscosity differs from the matrix viscosity. Additional novelty of the work stems from
an alternative means of computing collective diffusivity using dynamic structure factor theory in
a nonhomogeneous system. The dynamic structure factor theory has previously been used only in
homogeneous systems.

For a review of the literature of the shear-induced diffusion, we refer to our recent paper [8].
Briefly, shear-induced diffusion is characterized by self-diffusivity Ds = γ̇ a2 fs(φ) [γ̇ is the shear
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rate, a the particle radius, and fs(φ) the nondimensional self-diffusivity, φ volume fraction], which
defines the random motion of individual particles and is present even in a homogeneous suspension
or emulsion, and collective or gradient diffusivity Dc = γ̇ a2 fc(φ) [ fc(φ) is the nondimensional
collective diffusivity] that defines the diffusive flux −Dc∇φ in the presence of a concentration
gradient [9]. Shear-induced self- and collective diffusion in rigid-sphere suspensions have been
widely studied both experimentally [3,10] and numerically [11–15] since the pioneering work
of Eckstein et al. [1]. However, emulsions of viscous drops in contrast have not been studied
much. The first measurement of collective diffusivity in a viscous emulsion by King and Leighton
[16] was marred by the presence of stabilizing surfactants and gave rise to values much smaller
than theoretically expected. The only successful measurement of collective diffusivity in a viscous
emulsion in the literature was performed by Hudson [17], who used more viscous drops to avoid
emulsion instability. Self- and collective diffusivities in RBCs and vesicles have been measured
in in vitro channels [6,7,18,19]. Self-diffusivity in a viscous emulsion has been measured using
pair interactions between drops [4] in a dilute system, as well as using full-scale simulation in a
nondilute system [20]. Pairwise simulation of vesicles [21,22] and RBCs [23] has been used to
compute self-diffusivity in a dilute system of such complex rheological particles. Note that unlike
self-diffusivity, collective diffusivity computation by summing pairwise displacement results in
divergent integrals. Such problems could be addressed by a renormalization procedure using global
constraints, as has been applied in analytical computation of effective stresses and sedimentation
velocity in a rigid-sphere suspension [24,25].

In our previous article, we proposed a technique to compute collective diffusivity by nu-
merically simulating a layer of initially closely packed drops diffusing in a plane shear. We
used a front-tracking finite-difference method [26–29] to fully resolve each drop deforming and
moving past each other. We obtained values for a nondimensional collective diffusivity coefficient
that compared well with previous experiments [6,17]. Our simulation showed a nonmonotonic
variation in collective diffusivity with capillary number where with increasing capillary number,
initially the diffusivity increased, reached a maximum, and then subsequently decreased for larger
values of capillary number. Although there was no other study of collective diffusivity versus
capillary number in the literature, the self-diffusivity values computed using pairwise simulation
by Loewenberg and Hinch [4] also showed a similar nonmonotonic trend.

Our previous study of a viscosity-matched system is extended here to systems where drop and
matrix viscosities differ. Note that due to its ubiquitous presence in many chemical and biological
phenomena and at the same time the difficulties in performing controlled experiments and the
concomitant sparse literature to date, the shear-induced diffusion warrants further fundamental
studies, such as the one attempted here, to delineate the nature of shear-induced diffusion. We have
also developed a dynamic structure factor theory–based method to compute collective diffusivity.
This method has so far been limited to homogeneous systems. Furthermore, the main result found
here—the nonmonotonic variation of collective diffusivity with viscosity ratio, which offers an
interesting contrast to the monotonic variation of self-diffusivity obtained previously using pairwise
interactions [4]—a posteriori justifies the current study. We provide a detailed comparison with
their pairwise drop trajectories to establish the accuracy of our simulation technique.

II. THEORETICAL FORMULATION

In this section, we provide the mathematical formulation and the numerical technique. The
description here closely follows that of our previous article [8] and is presented here briefly for
completeness. A layer of randomly packed drops of radius a and viscosity λd suspended in a fluid
of viscosity λm is subjected to simple shear flow. Mathematically, the layer is infinite in the other
two (x and z) directions. However, the computation, as described below, will be performed in a
finite domain with periodic boundary conditions in these two directions and velocities prescribed at
y boundaries to create the shear flow (Fig. 1). The results were examined to be independent of the
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FIG. 1. A schematic of the layer of randomly placed drops in simple shear flow.

domain size [8]. The drops interact and move past each other, resulting in an effectively diffusive
motion.

A. Gradient diffusivity from self-similar solution

The problem (it is homogeneous in the x and z directions) results in a diffusion equation for the
local volume fraction, φ = φ(y, t ) in the y direction:

∂φ

∂t
= ∂

∂y

(
Dc

∂φ

∂y

)
, (1)

with Dc = γ̇ φa2 f2(assumption of two-particle interactions being dominant and thereby the rate of
collision being γ̇ φ) [4–6,30]. Here f2 (subscript c for collective diffusivity fc,2 has been dropped
for convenience) is the nondimensional collective diffusivity in the velocity-gradient direction, the
focus of the present work. The assumption of linear dependence of Dc on volume fraction, or
equivalently, the dominance of pairwise interaction is a posteriori justified by the simulation results.

It has been shown by a detailed analysis that when a fixed number of particles spread due to
shear-induced diffusion, Eq. (1), nondimensionalized using t = t ′/γ̇ , y = y′a admits a self-similar
parabolic concentration [6]

ψ (η) = ( f2t ′)1/3φ = (b − η2/6), η = y′/( f2t ′)1/3, (2)

in the similarity variable η (b is a free parameter). Note the t1/3 spread of the profile in contrast to
t1/2 growth in systems with a constant diffusivity Dc (i.e., independent of volume fraction). Note
that in the case of particles spreading from one side in an initially Heaviside concentration profile
[30], the characteristic exponent is still 1/2, even when Dc = γ̇ φma2 f2 with m > 1. It can be shown
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(a) (b)

FIG. 2. (a) Cube of the width of the layer of drops plotted as a function of time grows linearly with time.
Snapshots of the evolving drop configurations at various time instants. See Supplemental Material [31] for a
movie of drop evolution. (b) Concentration profile of the drops at various time instants, showing a parabolic
profile broadening with time. Inset shows a collapse of the same when plotted against the scaled similarity
variable according to Eq. (2).

[6] that according to (2), the half-width w
−

of the φ(y′) profile at half-height satisfies

w−
3 − w−

3
o = Kt ′, K = 9 f2N0/(4

√
2), No =

∫
φ(y′, t ′) dy′. (3)

Here w− 0 is the initial width, and No is a conserved quantity related to the particular nature of the

problem mentioned before—a fixed number of particles diffusing out. f2 is computed by fitting a
parabolic curve for the droplet concentration at any instant of time and obtaining the half-width
w− (t ′). Figure 2(a) shows the linear growth of w−

2 past t ′ ∼ 20. Figure 2(b) shows that the volume

fraction of the drops follows a parabolic spatial distribution at different time instants, all of them
collapsing to a single curve in the similarity variable [inset of Fig. 2(b)] consistent with (2). In
Malipeddi and Sarkar [8], we also proposed and developed an alternative method that avoids curve
fitting and computes the standard deviation, called “modified” width, of the concentration profile
from the drop positions (y′

i) as

w =
√√√√ 1

N

N∑
i=1

(y′
i − μ)2, μ = 1

N

N∑
i=1

y′
i. (4)

Similar to Eq. (3), the cube of the modified width w3 scales linearly with time, albeit with a slightly
different constant,

w3 − w3
o = K ′t ′, K ′ = 9 f2N0/(10

√
5). (5)

In Malipeddi and Sarkar [8] we showed that the two procedures gave rise to identical values within
statistical variations intrinsic to the system. Here, we use Eq. (5) to obtain the value of the collective
diffusivity f2. Each simulation is run till t ′ = 200. We discard the data in the initial transient region
before the self-similar profile is reached (t ′ < 20). The remaining portion of the data is split into
four smaller intervals of 45 inverse shear units. The length of these intervals is enough to ensure
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that the drop movements in each interval are uncorrelated. The slope of w3 − w3
o vs time for each

subinterval is calculated and the mean value of these is reported. The standard deviation of the value
across these subintervals is used to estimate the uncertainty in the measurement.

B. Gradient diffusivity from dynamic structure factor

Both self- and collective diffusivities can also be computed from particle dynamics in a
homogeneous system [9,13]. The computation of collective or gradient diffusivity—which measures
diffusion down a concentration gradient—in a homogeneous system is counterintuitive; it is predi-
cated on the analysis of the decay of the spontaneously arising stochastic fluctuations encapsulated
in the wave-number-dependent dynamic structure factor. Originally the theory stemmed from
computation of diffusivity from dynamic light scattering (DLS), where a scattered response of
a monochromatic beam of laser from a scattering volume containing multiple scatterers (large
macromolecules such as DNA, proteins, amino acids, viruses, and bacteria) is measured [32].
For a dilute system of noninteracting scatterers, the autocorrelation of the fluctuation decays
exponentially and the decay time is inversely proportional to the diffusivity. For concentrated
systems, hydrodynamic interactions between the fluctuating particles cannot be neglected and the
measured scattered response requires careful analysis [33–35] and proper interpretation. In different
limits it reduces to collective or self-diffusivity [9]. Leshansky and Brady [14] carefully described
the theory and applied it to shear-induced diffusion. The analysis assumes no coalescence or
breakup, as was also true for our simulation.

The scattered response at wave number k(nondimensionalized by a) from N scatterers located at
x′

α (t ′), α = 1, 2, ...N is proportional to the intermediate scattering function

F (k, t ′) = 1

N

〈
N∑

α,β=1

eik·[x′
α (t ′ )−x′

β (0)]

〉
. (6)

Note that using the property of the Dirac δ function, the number density of the scatterers (here
droplets) and its spatial Fourier transform can be written as

n(x′, t ′) =
N∑

α=1

δ(x′ − x′
α ), n̂(k, t ′) =

N∑
α=1

eik·x′
α . (7)

Therefore, F (k, t ′) = 1/N〈n̂(k, t ′)n̂∗(k, 0)〉 may be regarded as measuring the autocorrelation of
the fluctuation n′(x′, t ′) [where n(x′, t ) = n0 + n′(x′, t ′)] at wave number k for a statistically
homogeneous system, as the constant background n0 would not contribute to the autocorrelation.
The system is not homogeneous but evolves from a nonhomogeneous initial condition. Leshansky
and Brady [14] showed that the number density satisfies an advection diffusion equation in a shear
flow U + �̇ · x (U is the average flow and �̇ is the velocity-gradient tensor):

∂n

∂t
+ (U + �̇ · x) · ∇n = Dc∇2n. (8)

In spite of the advection terms in Eq. (8), in a simple shear due to the orthogonality of the k(=kŷ)
vector to the velocity field one obtains a simple relation for the diffusivity in the gradient direction
[14]:

Dc
yy = − 1

k2

d (ln F )

dt ′ . (9)
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C. Direct numerical simulation

We solve the incompressible Navier-Stokes equations using a front-tracking method [26,27]:

∇ · u = 0,
∂ (ρu)

∂t
+ ∇ · (ρuu) = −∇p + ∇ · [μ{∇u + (∇u)T }] −

∫
∂B

κnσδ(x − x′)dS(x′).

(10)
Here u, p, ρ, and μ are the velocity, pressure, density, and viscosity, respectively. κ is the local drop
surface curvature, n is the unit outward normal to the surface ∂B of all drops, and σ is the interfacial
tension. In this numerical method, all drops and their interactions are resolved. The method has been
used by our group in many problems involving drops [27,36,37] and capsules [38–40] in viscous
and viscoelastic fluids [41–48]. Here, a uniform shear flow is generated in a computational domain,
which is periodic in the x and z directions and has numerical walls in the y direction moving with
specified velocities (Fig. 1). The distance between the walls is Ly = 28a (a is the drop radius),
sufficiently large to simulate an unbounded shear. The length of the domain in the x and z directions
is Lx = Lz = 14a. A 96 × 192 × 96 uniform grid is used in the computational domain, leading to
15 grid points per drop diameter, shown to be sufficient in our earlier studies. In our previous article
[8], we carefully varied the domain lengths to ensure that the results are independent of them.
There we also showed that the results did not change with drop numbers above 70 or with volume
fraction corresponding to N0(=1.43 here) beyond a value. Note that the volume fraction and N0 are
related by (3). The simulations here are executed with 70 drops and an initial volume fraction of
45%. As noted in [8], the explicit nature of the code restricts the simulation to a small but nonzero
Re = ργ̇ a2/μ = 0.1, which has been shown to match Stokes flow results [29]. In Fig. 5 below, we
will show that the approach matches boundary element simulation of a Stokes flow.

III. RESULTS AND DISCUSSION

A. Effects of viscosity ratio variation

We calculate the collective diffusivity coefficient f2 for a range of viscosity ratios using the
self-similar scaling of the drop layer width. We also compute the collective diffusivity itself Dc

yy
using the wave-number-dependent dynamic structure factor (DSF).

1. f2 from scaling of the layer width

Figure 3 shows the growth of the width of the drop layer with time for different viscosity ratios
at Ca = 0.05 [Fig. 3(a)] and Ca = 0.30 [Fig. 3(b)], displaying clearly a 1/3 scaling of the layer
width with time. From the slopes, f2 is computed according to Eq. (3) and plotted in Fig. 4(a).
As can be expected from Fig. 3, slope varies nonmonotonically with λμ [Fig. 4(a)]: f2 increases
initially with increasing λμ and reaches a maximum around the viscosity ratio of about 1, and then
decreases. At higher viscosity ratios, drop deformation is known to decrease, reaching the limit of
a rigid sphere, thereby resulting in lower diffusivity. In fact, due to reversibility of the Stokes flow,
pairwise interaction fails to produce any diffusive motion in the rigid-particle limit. In a rigid-sphere
suspension,Dyy ∼ φ2 in the leading order [5], and therefore f2 = 0.

Note that we found a nonmonotonic variation f2 with Ca previously [8]. Similar to the case there,
the reason for the nonmonotonic behavior is the drop geometry as a function of λμ. In Fig. 4(b),
we compute drop deformation characterized by Taylor deformation D = (L − B)/(L + B) [L being
the maximum distance of the drop interface from its center and the B being the minimum distance]
[49], averaged over all drops, once it reaches a steady value after initial transients. It shows that with
increasing λμ, D first increases, increase roughly coinciding with the region where f2 also increases,
and then decreases. At the same time the drop inclination angle ϕ, also plotted in Fig. 4(b), with
the flow direction steadily decreases. The increasing trend of D and the variation of ϕ are consistent
with the small deformation moderate λμ perturbative results D = Ca(19λ + 16)/(16λ + 16) [49]
and θ = π/4 − Ca(2λ + 3)(19λ + 16)/(80λ + 80) [50]. (As is well recognized in the literature,
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(a) (b)

FIG. 3. Cube of width of the drop layer vs time for various viscosity ratios for Ca = 0.05(a) and Ca =
0.30(b) showing the expected linear trend.

the analytical result fails to predict the decreasing trend of D at higher viscosity ratio.) The initially
increasing drop deformation increases the hindrance to passage of drops past each other, increasing
the diffusivity coefficient f2. Subsequently, the decreasing deformation as well as decreasing
inclination angle facilitates drops passing each other, reducing f2. Note that Rusconi and Stone
[30] have shown that the geometry of the suspended particles can have significant effects on
gradient diffusivity, e.g., highly asymmetric platelike particles have gradient diffusivity 2 orders
of magnitude higher than that of rigid spheres at similar volume fraction.

We find the collective diffusivity coefficient computed here as well as in our previous paper [8]
to be consistently 8–9 times higher than those computed using a simulation of pair interactions
between drops for a dilute emulsion by Loewenberg and Hinch [4]. This ratio is similar to what
was found for rough sphere suspensions—ratio of collective diffusivity to self-diffusivity is ∼6
[5]. As noted before, Loewenberg and Hinch [4] found self-diffusivity to vary nonmonotonically
with increasing Ca as did we [8] (also see below). However, their self-diffusivity coefficient fs,2

(a) (b)

FIG. 4. (a) Dimensionless coefficient of diffusion f2 vs viscosity ratio λμ for different capillary numbers.
(b) Main figure shows mean drop deformation parameter and inset shows drop orientation angle.
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(a) (b)

FIG. 5. (a) Relative displacement of two drops interacting in shear flow comparing our results (solid line)
with those obtained from boundary element method (dotted line) by Cristini et al. [52] and experimental
measurements (open circles) by Guido and Simeone [51]. Main figure is with Ca = 0.135, λμ = 1.37. Inset is
with Ca = 0.13 and λμ = 1.4. (b) Final net relative displacement of two drops, initially separated 0.5a in the
gradient direction for different viscosity ratios λμ at Ca = 0.30. Present results (diamonds) compare reasonably
well with boundary element method results of Loewenberg and Hinch [4].

did not show a nonmonotonic variation with λμ; it showed a constant variation for the small
λμ and then a strictly monotonic decay for larger values of λμ. Using an identical approach of
simulating pair interactions, Omori et al. [23] computed the self-diffusivity of a dilute suspension
of red blood cells to find a monotonically decreasing value for fs,2. Note, however, that the self- and
gradient diffusivities, although both are generated by the same shear-induced irreversible drop-drop
interactions, describe manifestly different aspects of emulsion behaviors and could have different
trends. Although the current work focuses on collective diffusivity, we compare here our simulation
method with that of Loewenberg and Hinch [4]. Computing self-diffusivity by simulating pair
interactions between droplets using their method would require a single set of parameters ∼60–70
simulations with different relative initial positions of the droplets. It would be computationally
expensive, onerous, and is clearly outside the scope of the present work. Here we compute pair
interactions for droplets in shear to show in Fig. 5(b) that the final net relative displacement
[initially at (0,0,0) and (−10a,0.5a, 0)] as a function of viscosity ratio matches identically with the
boundary element simulations of Loewenberg and Hinch [4]. In Fig. 5(a), the relative y displacement
between drops as a function of relative x displacement for two different capillary numbers also offers
excellent match with experiments [51], as well as more recent boundary element simulation from the
same group Cristini et al. [52]. Successful comparison with previous methods offers validation for
our methods, specifically for our numerical simulation technique. It remains difficult to conclusively
argue for a simple physical reason for the trend in effective properties of overall emulsions such
as gradient or self-diffusivities. However, the monotonic decrease of final relative displacement in
Fig. 5(b) offers a plausible reason for monotonically decreasing self-diffusivity in a dilute emulsion,
i.e., neglecting more than two-particle interaction, as seen in Loewenberg and Hinch [4].

2. Dc
yy/γ̇a2 using dynamic structure factor

We compute F (k, t ′) using (6) from the drop positions (discarding initial data t ′ = 20). The
resulting intermediate scattering functions are averaged over overlapping intervals to obtain a
smooth time evolution curve [14]. Figure 6(a) shows that − ln F (k, t ′)/k2 at Ca = 0.20 and
λμ = 5.0 for different wave numbers normalized by their initial value displays a linear growth
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(a) (b)

FIG. 6. (a) Main figure shows the linear growth in − ln F (k, t ′)/k2 with time for various wave numbers
for Ca = 0.20 and λμ = 5.0. Inset shows Dc

yy/γ̇ a2 vs wave number k for a few different viscosity ratios.
(b) Dc

yy/γ̇ a2 vs viscosity ratio for different Ca values.

with the slope being asymptotic to a single value in the limit of k → 0 or the large wavelength
limit. This limiting slope, Dc,yy, is plotted as a function of λμ for several Ca values in Fig. 6(b). The
trend is remarkably similar to that of f2 vs λμ in Fig. 4(a). A direct comparison is not available,
as the emulsion is not homogeneous and the average concentration of the progressively widening
drop layer decreases with time. However, note that the ratio Dc

yy/ f2 ∼ 0.1 is close to an average
volume fraction ϕ over the whole diffusive process starting with the maximum ϕinitial ∼ 0.25 for the
post-transient initial packed layer at t ′ = 20. We plot in the inset of Fig. 6(a) the slope of − ln F/k2

as a function of wave number k for different λμ. However, a straightforward interpretation of this
quantity as the wave-number-dependent diffusivity is not possible as is done in the literature [14]
because of the inhomogeneous nature of the problem. Here the process is dominated by an initial
inhomogeneous distribution containing a finite concentration gradient relaxing through a nonlinear
diffusive process [Eq. (1)], unlike the typical case in the literature where it is a spontaneously arising
infinitesimal stochastic concentration fluctuation relaxing. As a result, the slope increases with k,
unlike, say, in Leshansky and Brady [14] where it decreases, reaching self-diffusivity in the limit
of k → ∞. However, we note that the dynamic structure factor, which was typically computed and
applied only to homogeneous systems, offers a novel perspective about the gradient diffusivity of
nonhomogeneous systems. Finally, the remarkable similarity of the curves in Figs. 4(a) and 6(b),
despite the completely independent way of computing them, makes us confident about the trends of
variations of f2 as well as Dc

yy.

B. Effects of capillary number variation

Figure 7(a) plots f2 vs Ca for three different viscosity ratios, all showing the nonmonotonic
variation. As noted in [8], the nonmonotonicity arises from the competition between rising defor-
mation and decreasing inclination with increasing Ca [shown in Fig. 7(b)], the former increasing
diffusivity initially and the latter eventually dominating to decrease it. Note that as we noted in [8],
a slightly different explanation was offered by Loewenberg and Hinch [4] for the nonmonotonic
variation of the self-diffusivity coefficient fs,2 with Ca. In Fig. 7(c), we also plot Dc

yy as a function
of Ca for the same three λμ values. It shows again very similar trends as in Fig. 7(a). Note
that the values found here are in agreement with the experimental measurement of Hudson [17],
who performed the experiments for viscosity ratios of 0.17–0.19 (depending on the drop liquids),
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(a) (b)

(c) (d)

FIG. 7. (a) Dimensionless gradient diffusivity f2 and (b) average drop deformation parameter, orientation
angle vs Ca for different viscosity ratios. (c) Dc

yy/γ̇ a2 vs Ca for different viscosity ratios. (d) Surface plot
showing f2 as a function of capillary number Ca and viscosity ratio λμ. The correlation describing the surface
is given in Eq. (9).

obtaining f2 = 0.16–0.25 for Ca of 0.02–0.40. Grandchamp et al. [6] measured a value of ∼0.77
(rescaled by particle volume) for red blood cells.

Finally, by combining all the results from the previous sections, we have generated an empirical
correlation for the dimensionless diffusivity f2 as a function of capillary number and viscosity ratio:

f2 = −4.06Ca2 + 3.12 × 10−3λ2
μ − 6.52 × 10−2Caλμ + 1.62Ca + 3.52 × 10−2λμ + 0.2. (11)

The empirical correlation is plotted in Fig. 7(d). Similarly, an empirical correlation for Dc
yy/γ̇ a2 is

also obtained [not plotted, as the variation is similar to Fig. 7(d)]:

Dc
yy/γ̇ a2 = (−2.36Ca2 − 1.67 × 10−3λ2

μ − 3.88 × 10−2Caλμ

+ 0.94Ca + 1.86 × 10−2λμ + 0.17
)
/10. (12)
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IV. CONCLUSION

We have computed the shear-induced gradient diffusivity in a sheared viscous emulsion of
droplets using a front-tracking-based direct numerical simulation. We simulated the deformation and
motion of droplets initially packed in a layer subjected to a simple shear. We focused on the effects
of the varying viscosity ratio between the drop and matrix fluids. From the time evolution of the
droplet phase concentration, we compute the coefficient f2 of the gradient or collective diffusivity
using a self-similar solution of the one-dimensional nonlinear diffusion equation assumed to be
satisfied by the system. There has not been any prior numerical computation of the quantity in the
literature for emulsion of viscous drops, capsules, or vesicles. There has been one experimental
measurement of this quantity for viscous emulsion in the literature, which is in agreement with the
values computed here. It is also of the same order as what has been measured in suspensions of cells
and vesicles.

The computed coefficient varied nonmonotonically with the viscosity ratio—in the range of
viscosity ratio [0.1,∼ 2] gradient diffusivity increased with viscosity ratio and decreases for values
beyond this range. The nonmonotonic behavior arises due to nonmonotonic variation in drop
deformation with viscosity ratio. The nonmonotonic trend is slightly different from that computed
for self-diffusivity computed in the literature using pair interactions for both viscous droplets
[4]—the self-diffusivity coefficient remained constant for smaller viscosity ratios decreasing mono-
tonically at higher viscosity ratios—and capsules [23]—monotonically decreasing with the viscosity
ratio. We validated our computational technique against the boundary element technique used by
those authors. This led us to believe that the nonmonotonic behavior results from multiparticle
interactions, or self and gradient diffusivities have different variations with viscosity ratio at low
viscosity ratio, an issue to be explored in future work.

We also compute the gradient diffusivity Dc
yy by computing the dynamic structure factor,

a computation that has so far been restricted to homogeneous suspension. The results when
appropriately scaled with average volume fraction are in agreement with the computed f2 values,
and more importantly, they show very similar variation with viscosity ratio, although the two
methodologies are very different. Based on the simulation results, we offer two phenomenological
correlations for f2 and Dc

yy as functions of capillary number and viscosity ratio.
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