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The deformation of a viscoelastic drop suspended in a Newtonian fluid subjected
to a steady shear is investigated using a front-tracking finite-difference method.
The viscoelasticity is modelled using the Oldroyd-B constitutive equation. The drop
response with increasing relaxation time λ and varying polymeric to the total drop
viscosity ratio β is studied and explained by examining the elastic and viscous
stresses at the interface. Steady-state drop deformation was seen to decrease from its
Newtonian value with increasing viscoelasticity. A slight non-monotonicity in steady-
state deformation with increasing Deborah number is observed at high Capillary
numbers. Transient drop deformation displays an overshoot before settling down
to a lower value of deformation. The overshoot increases with increasing β . The
drop shows slightly decreased alignment with the flow with increasing viscoelasticity.
A simple ordinary differential equation model is developed to explain the various
behaviours and the scalings observed numerically. The critical Capillary number for
drop breakup is observed to increase with Deborah number owing to the inhibitive
effects of viscoelasticity, the increase being linear for small Deborah number.

1. Introduction
Immiscible blends of liquids/polymers are of considerable importance because of

their presence in, for example, foods, paints, cosmetics, and chemical and material
processing. Macroscopic properties of these emulsions are directly related to the
microstructure resulting from drop deformation, breakup and coalescence (Tucker &
Moldenaers 2002; Li & Sarkar 2005b–d). In the case of a dilute emulsion with
negligible drop–drop interactions, the dynamics of a single drop provides complete
information about the emulsion behaviour. Accordingly, single drop breakup and
deformation in simple linear flows have been extensively investigated since the
pioneering study by Taylor (1932, 1934). Most of these investigations are restricted to
systems where both component fluids are Newtonian (Sarkar & Schowalter 2001a, b;
Li & Sarkar 2005a; for a review see Grace 1982; Rallison 1984; Stone 1994). Non-
Newtonian components, however, can have significant effects on drop-deformation
and breakup (Tucker & Moldenaers 2002; Yue et al. 2005a, b).

Drop deformation in a Newtonian system is governed by the Capillary number –
ratio of the viscous stretching force to the resistive force due to interfacial tension –
and viscosity ratio. Below a critical Capillary number, drops retain an elongated
but bounded shape, whereas above it they break up. Viscoelasticity changes drop
deformation as well as the critical Capillary number. The effects of viscoelasticity on
drop deformation have primarily been attributed to normal stresses, although actually
it is a composite result of changes in both viscous and viscoelastic stresses and the
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flow modification (Ramaswamy & Leal 1999a, b; Yue et al. 2005a). Viscoelastic drop
deformation has been shown to decrease as a result of the normal stresses in the
drop phase. Gauthier, Goldsmith & Mason (1971), de Bruijn (1989) and Varanasi,
Ryan and Stroeve (1994) found the critical capillary number Cacr for viscoelastic
drops in a Newtonian matrix to be higher than that in the corresponding Newtonian
case owing to the hindering effects of drop phase normal stresses. Mighri et al.
(1997, 1998), using constant-viscosity Boger fluids, observed the critical capillary
numbers to increase with drop elasticity, but critical capillary numbers were found
to decrease with increasing matrix viscoelasticity. However, Guido, Simeone &
Greco (2003) and Sibillo, Simeone & Guido (2004) found that matrix viscoelasticity
hinders breakup of a Newtonian drop in simple shear.

Greco (2002) obtained a perturbative solution to the single-drop problem for a
second-order drop and matrix model, and compared it with experimental results
for the deformation of a Newtonian drop in a viscoelastic matrix (Guido et al.
2003). Guido et al. (2003) found significant deviation from the Newtonian behaviour
only in the drop orientation angle, and not in the deformation at small Capillary
numbers. A phenomenological model by Maffetone & Greco (2004) that assumes
an ellipsoidal drop shape, but otherwise allows large deformation, predicted a less
deformed Newtonian drop in a viscoelastic matrix, as seen in the experiments by
Guido et al. (2003).

Computational investigations of viscoelastic drop dynamics have been initiated
using a number of different methodologies. Toose, Guerts & Kuerten (1995) used a
boundary-integral method for simulating a two-dimensional linear Oldroyd-B drop in
a Newtonian matrix, and concluded that for small deformation, drop viscoelasticity
affects only the transient behaviour. Ramaswamy & Leal (1999a, b) and Hooper
et al. (2001) used a finite-element method to investigate axisymmetric deformation
of viscoelastic drops using FENE-CR and Oldroyd-B equations, respectively, in a
uniaxial extension. They predicted reduced deformation for a viscoelastic drop in a
viscous matrix and enhanced deformation in the opposite case. Pilapakkam & Singh
(2004) presented finite-element simulations using an Oldroyd-B model. They observed
a non-monotonic change in drop deformation for a viscoelastic drop subjected to shear
in a Newtonian matrix. Matrix phase elasticity was, however, seen to increase drop
deformation. Yue et al. (2005a, b) used a diffuse-interface method to study viscoelastic
effects on two-dimensional drops in simple shear flows. In their study, they showed
variations in stresses at the interface with drop/matrix elasticity to explain viscoelastic
effects. They concluded that the drop viscoelasticity inhibits drop deformation, in
conformity with previous observations. Matrix viscoelasticity, however, was shown to
cause a non-monotonic change in drop deformation with increasing viscoelasticity.
In a clear departure from these studies, Sarkar and Schowalter performed a two-
dimensional investigation of viscous (Sarkar & Schowalter 2001a, b) and viscoelastic
(Sarkar & Schowalter 2000) drop, deforming in time periodic extensional flows.
They developed a new viscoelastic algorithm that offers a natural viscous/viscoelastic
stress split (Perera & Walters 1977; Rajagopalan, Armstrong & Brown 1990; Sun &
Tanner 1994; Sun, Phan-Thien & Tanner 1996) and implemented it into the front-
tracking method. Apart from the time periodicity, the other distinctive aspect of
this investigation was inclusion of inertia. At finite inertia, the resonance of the
viscous system found by Sarkar & Schowalter (2001a, b) is significantly altered by
the upper convective Maxwell viscoelasticity in that while the elasticity increases the
effective spring term of the system, it decreases damping. As a result, the deformation
could either increase or decrease with increasing viscoelasticity (Weissenberg number)
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Figure 1. A schematic of the domain of calculation.

and frequency, depending upon other parameters. They developed a simple ordinary
differential equation model to describe the observed behaviours. They also noted an
additional effect of spatial resonance of shear waves within the drop boundary which
leads to increased deformation at certain Weissenberg numbers. These studies are,
however, limited by the two-dimensional nature of their computations. Khismatullin,
Renardy & Renardy (2006) have implemented a three-dimensional volume-of-fluid
method for investigation of the viscoelastic single-drop problem.

Here, we present a three-dimensional investigation of deformation and breakup of
an Oldroyd-B drop in a Newtonian matrix at small Reynolds number (Re = 0.1). We
choose Oldroyd-B as the simplest materially frame-indifferent constitutive equation
with a single relaxation time; it has a shear-independent viscosity, and supports a
positive first normal stress and a zero second normal stress in shear. We note that just
like the upper convective Maxwell, Oldroyd-B is equivalent to an infinitely extensible
elastic dumb-bell model. Such models predict an infinite extensional viscosity in a
homogeneous steady uniaxial extension for De = 0.5. The present investigation of a
drop in a shear flow did not encounter any of the associated problems (see however,
Rallison & Hinch 1988). Note that the viscoelastic algorithm developed here can be
used for other differential constitutive models, including those with finite extensibility
such as FENE-CR. In § 2, we provide the mathematical formulation of the problem.
Section 3 describes the numerical implementation of the front-tracking method and
the scheme for the viscoelastic phase. In § 4, we provide an intuitive force balance
model that is used later to explain the simulation results in § 5. Section 6 summarizes
the work.

2. Mathematical formulation
The flow of the droplet matrix system is governed by the momentum conservation

equation:

∂(ρu)

∂t
+ ∇ · (ρuu) = ∇ · τ −

∫
∂B

dxBκnΓ δ(x − xB), (1)

in the entire domain Ω (figure 1) consisting of the dispersed phase ΩD and the
continuous phase ΩC . Here, Γ is the interfacial tension (constant), ∂B represents the
surface of the drop consisting of the points xB , κ the local curvature, n the outward
normal, and δ(x − xB) is the three-dimensional Dirac delta function. We represent
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the interfacial tension force as a singular body force in anticipation of the numerical
(front-tracking) implementation. τ is the total stress tensor given by:

τ = −pI + Tp + Tv, Tv = µsD, (2)

where p is the pressure, µs is the solvent viscosity and D= (∇u) + (∇u)T is the strain
rate tensor. Tp is the extra stress (also referred to as polymer stress or viscoelastic
stress) due to the presence of the polymer. We use the Oldroyd-B constitutive equation
for Tp:

λ
∇
Tp + Tp = µpD, (3)

where µp is the polymeric viscosity, λ is the relaxation time (λ= 0 in the Newtonian

component outside), and
∇
Tp is the upper convected time derivative defined as:

∇
Tp =

∂Tp

∂t
+ u · ∇Tp − (∇u)Tp − Tp(∇u)T . (4)

The superscript T represents the transpose. The fluid is considered to be incompres-
sible in both phases:

∇ · u = 0. (5)

The Oldroyd-B fluid does not show shear thinning effects. Shear flow of an Oldroyd-
B fluid gives rise to a first normal stress difference, N1 = 2µpγ̇ 2λ and shear stress
T p

xy = µpγ̇ (γ̇ is the shear).

3. Numerical implementation
The drop is placed in a computational domain (convergence with increasing domain

size was verified). The flow is considered to be periodic in the x- and z- directions.
Velocities are specified at the upper and lower plates in the y- direction to impose
a simple shear of magnitude γ̇ . The matrix being Newtonian, the extra stresses are
identically zero on the boundary of the computational domain. The initial velocity
field is also assumed to be a simple shear, where a spherical drop of radius a is
suddenly introduced at t =0. The extra stresses are assumed to be zero initially.

3.1. Front tracking method

We use a front-tracking finite-difference method (Unverdi & Tryggvason 1992;
Tryggvason et al. 1998, 2001) to solve the initial-boundary-value problem. The
method is discussed in detail in Sarkar & Schowalter (2000, 2001a) and Li &
Sarkar (2005a). Here, we provide only a brief outline. The drop-matrix two-phase
system with different properties (density, viscosity, relaxation time) across a sharp
drop boundary is transformed into a single-phase system with properties varying
smoothly over a few computational grid points (here ∼ 4	x). The system therefore
has the same equation everywhere, e.g. the same Oldroyd-B equation for polymeric
stresses even in the Newtonian phase outside, with relaxation time λ=0 (Sarkar &
Schowalter 2000). In front tracking, the smoothed representations of the properties
are found by solving a Poisson’s equation for the indicator function, which is zero
outside and unity inside (Unverdi & Tryggvason 1992). Apart from a regular three-
dimensional Cartesian grid in the entire domain, the moving interface (front) is
separately discretized using triangular elements. The front is used in determining
the properties. Once the smoothly varying property fields are attained, (1) is solved
by a finite-difference method to obtain the velocities at the Cartesian grid points.
The interface evolution is described by the nodal (triangle vertices) velocity on the
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front obtained by interpolation. For this interpolation as well as those involved in
representing the singular terms in the Poisson’s equation and in (1) due to the surface
tension, a smoothed surrogate of delta function (Peskin 1977) is used. An adaptive
regridding scheme is used to prevent excessive distortion of the front elements.

3.2. Finite difference

The momentum equation is solved on a regular staggered grid with velocity nodes at
the face centres and pressure and material properties defined at the cell centres. The
extra stress nodes are also placed in a staggered arrangement, with normal stress T p

xx ,
T p

yy and T p
zz nodes at cell centres and shear stress T p

xy , T p
yz and T p

zx nodes at cell corners.
The momentum equation (1) is solved by an operator splitting projection method in
two steps:

ρn+1u∗ − (ρu)n

	t
= −∇ · (ρuu)n + Fn + ∇ · τ n, (6)

un+1 − u∗

	t
= − 1

ρn+1
∇pn+1, ∇ ·

(
1

∇ρn+1
pn+1

)
=

1

	t
∇ · u∗, (7)

u∗ is an intermediate velocity. Fn is the body force, which in our case of neutrally
buoyant drops comprises only the surface tension force. The Poisson equation for
pressure is solved using a multi-grid method.

3.3. Constitutive equation

The Oldroyd-B constitutive equation for extra stress can be expressed as:

λ
∂Tp

∂t
+ Tp = K(t), (8)

where,

K(t) = µpD − λ{u · ∇Tp − (∇u)Tp − Tp(∇u)T }. (9)

A simple explicit scheme in time would give:

(Tp)n+1 − (Tp)n

	t
=

1

λ
{−Tp + µpD − λ(u · ∇Tp − (∇u)Tp − Tp(∇u)T )}n, (10)

which for a Newtonian phase (λ= 0) would yield a scheme that is singular. Such a
scheme cannot be used with a front-tracking method which uses a single equation
for the entire computational domain. Sarkar & Schowalter (2000) suggested a new
consistent scheme:

Tp(tn + 	t) − Tp(tn)exp(−(	t/λ))

= K(tn + 	t) − K(tn)exp(−(tn + 	t/λ)) +

tn+	t∫
tn

exp(t/λ)
∂K

∂t
dt. (11)

Neglecting the integral and assuming K(tn + 	t) � K(tn), we obtain the difference
scheme:

(Tp)n+1 = (Tp)nexp(−(	t/λ)) + Kn(1 − exp(−(	t/λ))). (12)

Note that the above scheme is consistent in the limit of λ → 0. We could choose
Kn+1 for the right-hand side to arrive at an implicit scheme. Also note an automatic
splitting of the viscous and elastic extra stresses:

(Tp)n+1 = µpDn +
[
(Tp)n − µpDn

]
exp(−(	t/λ)) +

(
Kn − µpDn

)
(1 − exp(−(	t/λ))),

(13)
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the first term being the viscous contribution from the polymeric stress. Additional
details can be found in Sarkar & Schowalter (2000).

3.4. ADI for viscous terms

An explicit scheme for calculating the viscous term suffers from restrictions on
time steps, i.e. 	t < 0.125(	x)2ρ/µ, for low Reynolds numbers. To overcome this
restriction, we treat some of the diffusive terms implicitly in alternate spatial directions
(ADI). The viscous terms from (2) and (13) can be collected together as

∇ · {(µp + µs)D
n} = Dxy + Dyz + Dzx + Dzz + Dyy + Dxx, (14)

where Dxy, Dyz, Dzx are the mixed derivatives, and are computed by an explicit
scheme. Dxx, Dyy, Dzz are the double derivatives to be treated implicitly. We split the
predictor step further and treat the diffusive terms by ADI:

ρn+1u∗∗∗∗ − (ρu)n

	t
= −∇ · (ρuu)n + Fn + ∇ ·

(
Tn

p − µpDn
)

+Dxy(u)n +Dyz(un) + Dzx(un),

ρn+1

(
u∗∗∗ − u∗∗∗∗

	t

)
= Dzz(u∗∗∗), ρn+1

(
u∗∗ − u∗∗∗

	t

)
= Dyy(u∗∗),

ρn+1

(
u∗ − u∗∗

	t

)
= Dxx(u∗).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(15)

Each implicit equation above gives rise to a tri-diagonal system that is directly solved
without iteration. The convergence of the scheme is ensured by prescribing for the
intermediate velocities at the boundary ∂Ω as:

u∗ = u∗∗ = u∗∗∗ = u∗∗∗∗ = un+1. (16)

The ADI scheme reduces the time step by one order of magnitude. We also adhere
to other criteria 	t < 2.0µ/(ρU 2

max ) and 	t <	x/Umax at high Reynolds numbers to
ensure the overall convergence of our simulations.

4. An ODE model for drop deformation
Sarkar & Schowalter (2001a) constructed a simple ordinary differential equation

model to describe the essential physics of the drop deformation problem for the viscous
case. They extended it for viscoelastic drops subjected to a time periodic flow by
including a complex viscosity and explained the observed trends from their numerical
simulation (Sarkar & Schowalter 2000). Here, we present a similar model to explain
viscoelastic drop deformation in steady shear. The drop response (deformation) at
zero inertia can be modelled by considering a balance of the viscous, interfacial and
viscoelastic forces as:

µ̂â2Ẋ + σ̂ âX + N̂d
1 â2X = µ̂â2Go, X(0) = 0, (17)

where X is representative of the non-dimensional drop deformation. The initial
condition X(0) = 0 represents an initially undeformed drop. The term µ̂â2Go is the
‘forcing term’ – viscous stretching force due to the applied shear Go. The model
material properties and drop radius are denoted with the same symbols used elsewhere
in the paper, but with a hat. Each of the terms on the left-hand side represents a stress
acting on an area a2. The first term is representative of the viscous ‘damping’ which
shows the other role besides stretching, that viscosity plays in this problem. The second
term represents the interfacial contribution 	p̂ ∼ σ̂ /[â(1+X)] ≈ σ̂ (1−X)/â (σ̂ /â just
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gives rise to an isotropic pressure). The third term is the first normal stress contribution
N̂d

1 arising from the tension along curved streamlines within the drop trying to snap
back. To model this effect, we note that for an Oldroyd-B fluid in simple shear, the
transient first normal stress difference is given as N1(t) = 2µpγ̇ 2λ{1 − exp(−t/λ)(1 +
t/λ)} and the transient shear stress is given as Txy(t) = µpγ̇ (1 − exp(−t/λ)). We use
this value of N1(t) to represent the N̂d

1 in (17) However, a modification of the first
term on the left-hand side of (17) to model the effect of the exponential growth of
the polymeric shear stress inside the drop, does not affect the solution significantly.
On non-dimensionalizing with length scale â time scale G−1

O
and substituting for N̂d

1 ,
we obtain

dX

dt
+ {k̂ + β̂D̂e(1 − exp(−t/D̂e)(1 + t/D̂e))}X = 1, (18)

where k̂ = σ̂ /µ̂âGo = Ĉa−1 is the inverse model Capillary number, D̂e = λ̂Go is the
model Deborah number and β̂ = µ̂p/µ̂ is the ratio of the polymeric viscosity to the

total viscosity. For D̂e = 0, we obtain the solution X = Ĉa(1 − exp(−t/Ĉa)) from (18)
in conformity with small deformation analytical results (Torza, Cox & Mason 1972).
The steady-state deformation according to the above model is:

X =
1(

k̂ + β̂D̂e
) =

Ĉa

(1 + β̂D̂eĈa)
. (19)

The ODE model predicts that at steady-state drop deformationD ∝ βDeCa2 at first
order in De. It is important to note that our model is only qualitative in that it
presents only the dominant balance between the forces that are of the same order.
However, their actual magnitudes are not represented. Therefore, rather than the
actual deformation values, only the trend and scalings can be predicted by the model.

5. Results and discussion
We place a spherical drop of radius a in a computational domain of size Lx = 10a,

Ly = 10a and Lz = 5a (see figure 1). We impose velocities U and –U , respectively, at the
upper and lower plates to obtain a strain rate γ̇ = 2U/Ly . We use a and γ̇ −1 as length
and the time scales to define the various non-dimensional parameters governing
the problem: Reynolds number Re = ρma2γ̇ /µm, capillary number Ca = µmaγ̇ /Γ ,
Deborah number De = λγ̇ , viscosity ratio λµ = µd/µm, density ratio λρ = ρd/ρm and
β = µpd/µd – the ratio of the polymeric to the total drop viscosity. Subscripts m

and d correspond to the matrix and the dispersed phase, respectively. For brevity,
we restrict ourselves to cases with λρ = λµ = 1. The total dispersed phase viscosity is
given as µd = µsd +µpd , sum of the solvent and polymeric viscosities. We fix Re = 0.1,
representing a low-Reynolds-number case. The explicit numerical method adopted
here cannot simulate a Stokes flow. The governing non-dimensional parameters for
the problem are then Ca, De and β . We have fixed β = 0.5 for all our results, except
in a later section where we specifically investigate the effects of β variation.

5.1. Convergence study

Taylor (1932, 1934) observed that a bounded drop assumes an approximately
ellipsoidal shape in a linear flow with a major and a minor axis of length L and
B; he defined the deformation by a measure D = (L − B)/(L + B). In figure 2, we
present a convergence study of our method with grid refinement; the time evolution
of the deformation parameter D is plotted for Ca = 0.1 and De = 2.0 for varying



8 N. Aggarwal and K. Sarkar

0.3

0.2

D 96 × 96 × 48
160 × 160 × 80

5
0

0.005

D
 –

 D
16

0

10 (×10–5) 15
N–2

80 × 80 × 40
96 × 96 × 48
112 × 112 × 56
128 × 128 × 64
160 × 160 × 80

0.1

0 2 4

t′
6

Figure 2. Convergence study of deformation D plotted against non-dimensional time t ′(= γ̇ t)
with varying grid discretization for Re =0.1, Ca = 0.1 and De = 2.0; Insets show (a)
convergence of drop shape (the two contours coincide) with resolution and (b) the error
in D (at steady state) with resolution N , where N is the number of grid points along one of the
coordinate directions. The error is computed with reference to the D value at 160 × 160 × 80.

grid resolution. We have increased the discretization level from 80 × 80 × 40 up
to a maximum of 160 × 160 × 80. We see that D increases as the drop deforms
from its initial spherical shape and reaches a steady value Dst in the long-time
limit. D decreases with increased discretization. Dst plotted in the inset displays a
quadratic convergence with discretization. We choose a 96 × 96 × 48 grid for our
computations. Even though we notice a slight deviation from the converged value at
this discretization, we note that the actual drop shape does not vary much from the
one with 160 × 160 × 80 discretization, as also shown in the inset. We also investigated
the effect of the size of the computational domain by increasing each dimension to
1.5 times the above mentioned lengths, and found ∼1% variation in Dst and no
difference in drop shape. For determination of breakup parameters (presented later in
this section) we use a larger domain with increased length in the x-direction Lx/a = 15
with the same grid spacing.

5.2. Transient drop deformation

In figure 3a, we plot the three axes of the drop as a function of time for Ca = 0.2 and
varying De. They deviate from their initial value of unity; as in the Newtonian case,
the drop elongates in one direction (L) and shortens in the other two directions (B
and W ). The steady-state value of L decreases, and B and W (W is the ellipsoidal axis
in the vorticity direction) increases with increasing De owing to increased viscoelastic
stresses inhibiting the drop deformation. Correspondingly, in figure 3b, long-time D

(Dst ) shows a decrease with increasing De. For larger values of De (approximately
De � 0.8 for Ca = 0.2) we also note an overshoot in the transient deformation. This
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Figure 3. Effect of Deborah Number De on drop deformation for Ca =0.2 (a) Drop axes
normalized with initial drop radius a vs. non-dimensional time t ′. (b) D vs. t ′. The Inset in (b)

shows drop response X predictions from our ODE model for Ĉa = 0.2.

can be explained by noting that the relaxation time associated with the Oldroyd-B
constitutive equation leads to a finite time interval for the development of the
(inhibitive) viscoelastic stresses which then decrease the drop deformation. Such an
overshoot has also been reported by Yue et al. (2005b) for viscoelastic drops with
De/Ca > 5 in their two-dimensional study. We also plot in the inset of figure 3b,
the prediction of our ODE model. Note that as pointed out before, the model is
not designed to be quantitative. The model results clearly predict the overshoot for
sufficiently high De, as was seen in the numerical solution, indicating that the model
truly represents the underlying physics. It should be noted that the overshoot in
deformation is over the long-time steady value and not over the Newtonian value.

Yu et al. (2004) and Toose et al. (1995) have shown that for a linear viscoelastic
system, the steady-state drop deformation value is the same as that for a Newtonian
case. In contrast, the decrease in the steady-state deformation with increased De

observed here is a result of the nonlinear nature of the Oldroyd-B equation which
gives rise to a finite first normal stress difference.

5.3. Steady state drop deformation

From the Newtonian study, we know that for Ca < Cacr , steady ellipsoidal drop shapes
are obtained in the long-time limit. In figure 4(a), Dst plotted as a function of Ca shows
a linear (Dst ∼ Ca) variation for small Ca, similar to the Newtonian case (Taylor 1932).
Consistent with figure 3(b), Dst decreases with De. This effect is especially prominent
for larger Ca when the drop deformation is significant. In figure 4(b) we plot Dst

(normalized by its Newtonian De = 0 value) as a function of De for various Ca.
For comparison, we also plot the predictions of the ellipsoidal drop model given by
Maffetone & Greco (2004). We obtain them by numerically solving their tensorial
evolution equation to a steady state. Our results match well with predictions, at
least up to De ∼ 0.5 (for Ca � 0.3). At higher De, we see a saturation in Dst i.e.
we encounter a maximal contribution of the drop phase elasticity in inhibiting drop
deformation. A similar saturation effect with increasing drop elasticity was observed
by Mighri et al. (1998) in their determination of the critical capillary numbers for
shear flow. The Maffetone & Greco (2004) model predicts a continued reduction
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Figure 4. (a) Steady-state deformation Dst vs. Ca for different De. (b) Steady-state drop de-
formation D (normalized with D at De = 0) vs. De for different Ca (�, Ca = 0.1; �, Ca = 0.2;
�, Ca = 0.3; ◦, Ca = 0.35) Solid lines represent our results. Dashed lines represent analytical
results from Maffetone & Greco (2004). (c) D vs. non-dimensional time t ′ for Ca = 0.3. (d) Dst

(normalized with D at De = 0) plotted vs. parameter De Ca (in log scale) following the ODE
model prediction D/DDe=0 ∼ DeCa. The solid line represents a least-squares fit through the
data points. Note that data points for Ca = 0.3 are not included in the determination of
the fitting curve.

in drop deformation. Note that their results hold only for De = De/Ca ∼ O(1). At
a larger capillary number (Ca = 0.35), our prediction differs significantly from the
prediction of Maffetone & Greco’s (2004) phenomenological model. Note that their
model is formulated to match results from second-order perturbation theory only.

For large Ca values (Ca = 0.3 and Ca = 0.35), we see a non-monotonicity – a slight
increase in Dst for larger De in figure 4(b). To explore this small increase in Dst ,
we plot in figure 4(c) the transient deformation for Ca = 0.3 and varying Deborah
number. On increasing the Deborah number from 1.0 to 1.5, even though the initial
deformation is higher, the long-time steady deformation decreases. However, on
further increasing it to De = 2.0 and De = 2.6, the initial transient deformation is
sufficiently high (owing to a lag in the development of viscoelastic stresses inside the
drop) that the steady-state deformation settles to a higher value. Such non-monotonic
behaviour of the Dst ∼ De curve has been previously observed by Pilapakkam &
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Singh (2004). Yue et al. (2005) also commented that such behaviour was possible at
high Ca. Note that the non-monotonic behaviour in Dst ∼ De is nonlinear in nature
and therefore not captured by the ODE model, indicating its limitation.

We would like to point out that the observed reduction in drop deformation with
De owing to viscoelastic stresses is rather small (∼ 10% for De = 3 at Ca = 0.3),
at least for the Ca values considered in figure 4(b). The effect of viscoelasticity is
dependent on the kinematics of the flow. The flow inside a bound ellipsoidal drop is
essentially rotational, which may explain the relatively small effect of viscoelasticity.
The flow field inside a viscoelastic drop does not deviate significantly from the purely
Newtonian case. However, for Ca close to the critical capillary number Cacr , the drop
undergoes significant deformation and we expect viscoelasticity to play a significant
role there. We explore this regime in a later section of this paper.

Our force balance model (19) predicts that the drop deformation for the Oldroyd-B
drop/Newtonian matrix system at second order in Ca and first order in De is

X ∝ Ĉa(1 − β̂ D̂eĈa). Note that DDe=0 ∼ Ca. In figure 4(c) we plot the predictions of
the model (linear fit; we have used data points in the small Ca and De range Ca < 0.3
and De � 0.8). We see that the prediction compares very well with the simulation data
for small Ca and De. We note that Greco’s (2002) perturbative analysis using a second-
order fluid predicts that deformation does not have an O(Ca2) term for either viscous
or viscoelastic drops. The result is at variance with our simulation as well as earlier
perturbative results of Barthès-Biesel & Acrivos 1973, Rallison (1984) and Bentley &
Leal (1986); they all predict an O(Ca2) term for the deformation of a viscous drop. A
careful reading of Greco (2002) reveals that it predicts both L and B to have identical
dependence on Ca2, cancelling such a term in deformation. Maffetone & Greco’s
(2004) phenomenological model compares better with experiment than Greco’s
second-order model. Our simulation matches the model predictions of Maffetone
& Greco (figure 4b). We believe that the absence of the Ca2 term in Greco (2002) for
D is a result of the assumptions underlying the perturbation analysis. Finally, we note
that the deviation from the corresponding Newtonian problem occurring at second
order in Ca suggests that for Ca ∼ Cacr , viscoelastic effects could be more pronounced.

In figure 5, we plot the deviation of the drop inclination angle ϕ from the principal
strain axis (45◦) as a function of De. We see that a viscoelastic drop shows decreased
alignment with the flow on increasing De. The drop inclination angle at O(Ca2) for
the Newtonian case is given by:

ϕ =
π

4
− (2λµ + 3)(19λµ + 16)

80(λµ + 1)
Ca (20)

(Chaffey & Brenner 1967; Maffetone & Minale 1998). Our numerical predictions
for De = 0 (shown in figures) match this analytical result. In the viscous case, drop
deformation increases with Ca, and the deformed drop is increasingly aligned with the
flow. Because of the decrease in deformation for a viscoelastic drop with increasing
De, the drop becomes less inclined with the flow direction.

To further explain the observed inhibition of drop deformation with increasing
De, following Yue et al. (2005a), we plot viscous and viscoelastic stresses along the
circumference of the drop (in the central plane of the drop) as a function of the angular
position φ from the flow direction. In figures 6(a) and 6(b), we plot the components
of viscous and viscoelastic stresses normal to the interface, i.e. Tnn = n · T · n, where n
is the normal to the drop interface. In the Newtonian limit (De → 0), the extra stress
becomes µpD (see (3)). We observe that the viscous normal stress T v

nn does not change
significantly with De, either in magnitude or in trend. The peak value seems to shift
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Figure 5. Deviation of steady state drop inclination angle ϕ from strain-rate axis i.e. 45◦ − ϕ
vs. De for different Capillary numbers. �, the analytical predictions from (20).

towards higher angular positions owing to an increase in the overall drop inclination
angle (figure 5). The viscoelastic normal stress T p

nn, however, shows a marked increase
in its peak value with increasing De. We also see a consistent shift of the peak values
towards lower angular positions with increasing De. The viscoelastic normal stresses
are tensile and maximum around the drop tip, hence exerting an inward pull, which
reduces the L-axis deformation. This stress is, however, weakly compressive at the
drop equator and hence exerts a ‘push’ which decreases the B-axis deformation.

In figure 7(a), streamlines for Ca = 0.2 De = 2.0 are plotted. A fluid element close
to the interface is going around the circumference of the drop. Note that the
‘instantaneous’ viscous stresses are representative of the strain rate. Increasing De
implies a higher relaxation time for the fluid element and hence, in a steady flow,
there is an increased time lag between the maximum strain rate and the maximum
viscoelastic stress. Indeed, this explains why the viscoelastic stress peaks show an
angular shift relative to the viscous stress peaks (figure 6b). We will return to
this explanation later in the paper when we discuss the effects of varying β . The
nonlinearity of the Oldroyd-B equation (non-zero N1) explains the increase in the
magnitude of the viscoelastic normal stress while the viscous normal stress which is
proportional to local strain rate, does not show any significant change.

Next, we look at the stresses tangential to the drop interface (i.e. along the
streamlines/path lines). In figure 6(c), we see that the viscous tangential stresses (like
the viscous normal stresses) do not show significant variation with De. The viscoelastic
tangential stresses (figure 6d), however, show a marked increase in magnitude with
increasing De. The viscous and the viscoelastic tangential stresses are both tensile near
the equator of the drop. Along curved streamlines, the ‘extra’ viscoelastic tensile stress
gives rise to a hoop stress effect, exerting a net inward pull on the drop interface. This
induces a higher pressure at the drop equator, thus pushing the drop outwards, as
concluded by Yue et al. (2005a). To summarize, the viscoelastic normal stresses at the
drop tips and the viscoelastic tangential stresses at the drop equator are responsible
for a reduction in drop deformation with increasing De.
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Figure 6. Stresses along the circumference of the drop in the z = Lz/2 plane plotted as
a function of the angular position (φ =0 coincides with the x-axis) for different De at
Ca = 0.2. Because of the symmetry, only half of the drop is shown. (a) Viscous normal stresses
T v

nn = n · Tv · n, where n is the outward normal to the circumference. (b) Viscoelastic normal
stresses T

p
nn = n · Tp · n (c) Viscous tangential stresses T v

tt = t · Tv · t , where t is a vector in the
z = Lz/2 plane, tangential to the circumference of the drop. (d) Viscoelastic tangential stresses
T

p
tt = t · Tp · t .

In figure 7(b), we plot the primary eigenvalue of the conformation tensor
A(= (λ/µ)Tp + I) which indicates the orientation and stretch of the polymer molecules,
at each node point in the viscoelastic phase. The orientation of the polymer
molecules shown in figure 7b corroborates our observation about the trends in
viscoelastic tangential and normal stresses at the interface. The polymer molecules
are perpendicular to the interface near the drop tips, whereas they are tangential to
the interface around the equator. We see that the respective stresses are significant at
the corresponding angular positions. Note that a very similar plot was also obtained
in the two-dimensional study by Yue et al. (2005a).

We investigate the overall three-dimensional nature of the problem by looking at
the viscoelastic stress in a plane perpendicular (x = Lx/2) to the flow direction. In
figure 8, we plot the viscoelastic normal stress on the interface T p

nn as a function of
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Figure 7. (a) Flow streamlines for a drop at steady state, in the z = Lz/2 plane at Ca = 0.2,
De = 2.0. The density of the streamlines inside the drop has been manually varied to give
a clearer picture of the streamline pattern. (b) Dominant polymer orientation at Ca = 0.2,
De = 2.0 in the z =Lz/2 plane.
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Figure 8. Viscoelastic normal stresses along the circumference of the drop in the x = Lx/2
plane vs. angular position (ψ = 0 coincides with y-axis) for different De at Ca = 0.2.

the angular position ψ . The stress magnitude is much lower than that in the z =Lz/2
plane, because the polymer molecules are primarily oriented along the flow direction.
The effect of viscoelasticity, albeit small, is examined for trends. In contrast to the
trend in figure 6b the polymeric normal stresses in figure 8 are always negative, thus
exerting a ‘push’ on the drop interface, trying to reduce W (and B) axis deformations
(figure 3a). Levitt & Macosko (1996) reported a widening of viscoelastic drops in the
vorticity direction for a system with significant second normal stresses. Note that an
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Figure 9. Transient drop deformation D vs. t ′ plotted for different viscosity ratios
β(= µpd/µd ) at Ca = 0.2, De =2.0. The inset shows drop response predictions of our ODE

model X for β variations at Ĉa = 0.2, D̂e = 2

Oldroyd-B fluid has a zero second normal stress difference. The tangential viscoelastic
stress T

p
tt in the same plane shows a small positive value (not shown here).

5.4. Variation of parameter β

Next we look at the effect of varying parameter β(= µpd/µd), while keeping the
viscosity ratio constant λµ = (µpd + µsd)/µm =1. For β =1, we obtain an upper
convected Maxwell (UCM) constitutive equation for the drop phase. In figure 9, we
plot the transient drop deformation for Ca =0.2, De = 2.0 and varying β values. We
see no overshoots in the transient deformation for β = 0. However, on increasing β ,
not only do we see an overshoot, but the overshoot magnitude increases. The steady-
state drop deformation decreases with increasing β . The inset of figure 9 shows
predictions of our ODE model for Ĉa = 0.2, D̂e = 2. Our model is able to capture
the decrease in steady-state deformation as well as the increase in the magnitude of
overshoot (difference between the maximum value during the transient deformation
Dmax and Dst ). Toose et al. (1995) concluded in their two-dimensional study that
the effect of the parameter β is evident only in the transient deformation, while
the steady-state deformation remains unchanged. We would like to note that this is
true only for Ca � 1, which was the focus of their study. On increasing β , we also
see an increase in ϕ, i.e. a reduction in the drop alignment with the flow direction
(figure 10). This reduced alignment is consistent with the observed reduction in
steady-state deformation.

In figure 11, we plot Dst and Dmax for Ca =0.2 with varying De as a function of
β (no plot for Dmax for De = 0.25 as there is no overshoot for this Deborah number
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Figure 11. Drop deformation parameter D plotted vs. β for varying De at Ca = 0.2. Solid
lines represent a linear fit over the steady state deformation values Dst . Dash-dotted lines
represent a linear fit over the maximum value of deformation Dmax .

for any β). We see a decrease in Dst and Dmax with increasing β . The magnitude of
overshoot Dmax − Dst , increases with both β and De. An increase in β , for constant
De, is equivalent to increasing the viscoelastic contributions in the drop phase. A
linear least-squares curve fits the data sets very well. This linear decrease of Dst with
β is also predicted by our ODE model (see (19)). The slope of the linear fit changes
with De; however, the effect of De variation saturates as noted previously (figure 4b).
Note the negligible difference between the De = 0.8 and De = 2.6 curves.

In figure 12, we look at plots of viscous and viscoelastic stresses, normal to the
drop circumference (similar to figure 6a, b) for Ca = 0.2, De = 2.0 and varying β . We
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Figure 12. Viscous (T v
nn) and Viscoelastic (T

p
nn) normal stresses (normalized with µsd γ̇ and

µpd γ̇ , respectively) along the drop circumference in the z = Lz/2 plane vs. angular position from
the x-axis. Curves with symbols represent viscous normal stresses. Curves are for parameter
values Ca = 0.2, De =2.0 and varying β .

see that the magnitudes of the stresses do change with β . However, in contrast to
figure 6(a, b), the angular phase lag between the peak values of the viscous and the
viscoelastic stresses does not change significantly for the different β values. This is
because the relaxation time (De) is the same for all cases.

5.5. Critical capillary numbers

Drop elasticity inhibits drop deformation. Hence, we expect the critical capillary
number Cacr for a viscoelastic drop to increase from the Newtonian case. Use of
numerical methods for determination of Cacr is fraught with convergence issues.
As reported by Li & Sarkar (2006), it becomes difficult to obtain grid convergence
close to the critical parameter set. A parameter set predicting drop breakup at a
particular resolution might result in a steady shape on grid refinement. Hence, the
critical parameters can be estimated only within a certain error-bound. The lower
bound refers to the maximum Ca (for a particular De) for which we see a bounded
shape even with grid refinement. Similarly, the upper bound refers to the minimum
Ca for which we obtain unbounded drops with grid refinement. In contrast to the
drop breakup study for viscous drops in a vortex flow (Li & Sarkar 2006), whether a
viscoelastic drop in a sheared matrix eventually breaks up, is not easily ascertained
close to the critical case owing to the long time scale of the process. Hence, lengthy
computations must be performed to determine the critical parameters precisely. We
have thus chosen to present in our study, only the lower bounds for most of the
data points. In figure 13, we plot drop deformation parameter L/a (L/a is a more
appropriate representation of large deformations; Bentley & Leal 1986) for Ca = 0.45.
We see that for De =1.4, we obtain a bounded drop shape at a grid resolution of
96 × 96 × 48. On using a finer mesh (112 × 112 × 56), the drop still attains a bounded
drop shape. On increasing the capillary number to Ca = 0.47 while keeping De =1.4,
we see unbounded drop shapes for both grid resolutions. Hence, we deduce Ca = 0.47
to be the upper bound at De = 1.4.
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Figure 13. Drop deformation predictions L/a for parameters close to the critical case at
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Figure 14. Effect of De variation on critical capillary numbers Cacr at viscosity ratio λµ = 1 in
simple shear flow. Upper bounds are indicated in Ca and are determined for De = 1, De = 1.4
and De = 2.1.

In figure 14, we compute the Cacr ∼ De curve for a fixed viscosity ratio λµ =1, (and
β = 0.5). Our numerical simulations are performed at small but finite Re =0.1. The
critical capillary number for the Newtonian case (De = 0) is found to be Cacr =0.365.
Renardy & Cristini (2001) in their numerical study using a volume-of-fluid (VOF)
method, determined the critical capillary number at Re = 0.1 and λµ = 1 to be ≈ 0.38.
The curve increases monotonically as expected because of inhibitive viscoelastic stress
in the drop phase. Moreover, the curve is linear for small De. Linear dependence of
Cacr on De was also observed by Lerdwijitjarud et al. (2003) in their experimental
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study. A quantitative match with their results is not possible because the matrix
phase in their study is also non-Newtonian and shows both shear thinning and elastic
effects.

The mode of breakup for viscoelastic drops could be significantly different from
that of Newtonian drops. A viscoelastic drop undergoes a significant amount of
stretching over a long period of time (Varanasi et al. 1994), a detailed study of which
remains beyond the scope of the present investigation. .

6. Summary
In this study, drop deformation and breakup of a viscoelastic (Oldroyd-B) drop

suspended in a Newtonian matrix, subjected to a simple shear flow, have been
investigated using a three-dimensional front-tracking algorithm. We observe that
drop viscoelasticity tends to inhibit drop deformation D in agreement with previous
experimental and numerical studies. The drop deformation decreases with De owing
to extra viscoelastic stresses inside the drop; the evolution in deformation shows an
overshoot in time owing to finite relaxation time for the development of viscoelastic
stresses, and the drop shows slightly decreased alignment with the imposed flow.
However, at high Ca, the steady deformation experiences a slight increase with
increasing De; the initial deformation is too high to be countered by the eventual
buildup of viscoelastic stresses. We analyse the normal forces at the drop interface to
show conclusively the inhibiting effects of viscoelastic stresses on drop deformation.
Our results match well with the ellipsoidal drop model theory of Maffetone & Greco
(2004) for small deformation. We also investigate in detail the effects of varying
polymer and solution viscosities keeping the relaxation time the same. We have
developed a simple force balance ODE model that provides a qualitative description
for all our observations. It predicts the observed scaling D/DDe = 0 ∼ DeCa. The ODE
model is also able to show clearly how overshoots in transient drop deformation can
be explained by the relaxation behaviour of our rate-type constitutive equation. The
observed drop response with β variation is also captured by the model. Finally, we
perform a study of breakup of a viscoelastic drop to note that the critical capillary
number increases with elasticity with Cacr ∼ De for small De.
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