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Wall induced lateral migration of a viscoelastic (FENE-MCR) drop in a Newtonian
fluid is investigated. Just like a Newtonian drop, a viscoelastic drop reaches a quasi-
steady state where the lateral velocity only depends on the instantaneous distance
from the wall. The drop migration velocity and the deformation scale inversely with
the square and the cube of the distance from the wall, respectively. The migration ve-
locity varies non-monotonically with increasing viscoelasticity (increasing Deborah
number); initially increasing and then decreasing. An analytical explanation has been
given of the effects by computing the migration velocity as arising from an image
stresslet field due to the drop. The semi-analytical expression matches well with the
simulated migration velocity away from the wall. It contains a viscoelastic stresslet
component apart from those arising from interfacial tension and viscosity ratio. The
migration dynamics is a result of the competition between the viscous (interfacial
tension and viscosity ratio) and the viscoelastic effects. The viscoelastic stresslet
contribution towards the migration velocity steadily increases. But the interfacial
stresslet—arising purely from the drop shape—first increases and then decreases with
rising Deborah number causing the migration velocity to be non-monotonic. The ge-
ometric effect of the interfacial stresslet is caused by a corresponding nonmonotonic
variation of the drop inclination. High viscosity ratio is briefly considered to show
that the drop viscoelasticity could stabilize a drop against breakup, and the increase in
migration velocity due to viscoelasticity is larger compared to the viscosity-matched
case. C© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4897921]

I. INTRODUCTION

Cross-stream migration of drops and particles plays a crucial role in flows of industrial
emulsions—oil production,1 food processing,2 injection molding of plastics with fillers3, 4—as well
as in biological flows of cells in small capillaries5 and microfluidic devices.6 In Stokes flow, a neu-
trally buoyant rigid particle in a viscous liquid does not migrate across streamlines in a wall bounded
shear due to symmetry under flow reversal.7–9 Reversibility can be broken by particle deformability,
viscoelasticity, or inertia. In this paper, we numerically investigate a viscoelastic drop migrating
under shear near a wall in a viscous liquid, and provide an analytic explanation of the phenomenon.

Drop migration in Newtonian systems has been studied extensively using experimental,10–17

theoretical,18–26 and numerical techniques,27–29 and excellent reviews have been written.30, 31 In
contrast, the literature of migration in non-Newtonian systems32–40 is meager, and most of it describes
migration of rigid particles.41–44 Apart from experimental observations,10, 11, 33, 40 there has been only
one report45 of theoretical investigation of viscoelastic effects on drop migration, where the authors
performed a rigorous perturbative analysis of the viscoelastic effects of both drop and matrix
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phases on migration using a second order fluid model. To our knowledge, there was no numerical
investigation of drop migration in a viscoelastic system before our recent investigation of a viscous
drop migrating in a FENE matrix in shear near a wall—N/V (Newtonian in viscoelastic).46 Readers
are referred there for a detailed discussion of the migration literature. The migration is caused by a
stresslet field induced by the drop in presence of the wall.12 The matrix viscoelasticity retards drop
migration, an effect we clearly show to arise from a non-Newtonian contribution to the stresslet
field. It is computed as an integral of the normal stress differences in the flow field. Here, we extend
the numerical and theoretical analysis to the V/N case—a viscoelastic drop in a Newtonian fluid.

Note that the perturbative analysis45 predicted that viscoelasticity either in drop or matrix phase
promotes drop migration in plane shear, in contradiction to recent experimental and numerical find-
ings in the literature which show rigid particles in a sheared viscoelastic medium moving closer
to a wall.47 In the limit of a high viscosity, a viscous drop behaves similar to a rigid particle.
Such contradiction points to the limitation of perturbative analysis and demonstrates a need for full
scale numerical simulation. Such simulations, especially in simple canonical systems—e.g., involv-
ing one drop in shear,48–52 extension,53 or gravitational fall54 using simplest possible constitutive
equations48–54—are critical for developing physical intuition about viscoelastic effects in multiphase
systems. Unlike viscous systems, our understanding of viscoelasticity is severely limited, and yet
of great importance for flow modeling and simulation. The difficulty lies in the subtle competition
between multiple effects in viscoelastic system often giving rise to baffling experimental observa-
tions. For instance, there were contradictory observations about effects of matrix viscoelasticity on
drop deformation in the literature.55–57 Numerical simulation showed that it can both decrease drop
migration at small Deborah or Wissenberg numbers by aligning a drop away from the axis of ex-
tension, or increase at higher Deborah numbers by local stretching at the drop tips.49, 57 The effects
of viscoelasticity in the drop phase is typically smaller than those due to matrix viscoelasticity.
However, they also generate several interesting phenomena. Although a viscoelastic drop deforms
less in shear compared to a viscous drop due to normal stresses in the circular streamlines,48 at
higher viscosity ratios, viscoelastic drop deformation can be greater than the viscous case. The
phenomenon arises due to a reduction of strain rate at higher viscosity ratios resulting in a reduc-
tion in deformation-inhibiting normal stresses, and simultaneous alignment with extension axis that
enhances deformation.

Here, we have used a front tracking finite difference method58 with a modified version of the
finitely extensible nonlinear elastic model due to Chilcott and Rallison (FENE-MCR).59 The FENE-
MCR model has a single relaxation time, a constant shear viscosity and a positive first normal stress
difference—all characteristics of a Boger fluid—and has been used in many viscoelastic studies.60–65

The mathematical formulation and its numerical implementation are described in Sec. II. Section III
discusses the problem setup and convergence. Section IV presents and analyzes the results of
the simulation. A theoretical analysis relating the interfacial, viscous, and viscoelastic stresses in
the system with the lateral migration velocity is presented following the numerical investigation.
Section V summarizes the findings.

II. MATHEMATICAL FORMULATION AND NUMERICAL IMPLEMENTATION

The mathematical formulation and the numerical implementation for Newtonian drops migrating
in a viscoelastic shear flow have been described in our recent publication46 and the formulation here
is similar. Therefore, it is only briefly sketched for completeness. The velocity field u of the droplet
matrix system is governed by the incompressible momentum conservation equations

∂(ρu)

∂t
+ ∇ · (ρuu) =∇ · τ −

∫
∂B

dxBκn�δ(x − xB),

∇ · u = 0,

(1)

in the entire domain �. The total stress τ is decomposed into pressure, polymeric and viscous parts:

τ = −pI + Tp + Tv, Tv = μsD, (2)
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where p is the pressure, μs is the solvent viscosity, and D = (∇u) + (∇u)T is the deformation rate
tensor. The superscript T represents the transpose. Tp is the extra stress (or viscoelastic stress) due to
the presence of polymer. � is the interfacial tension (constant), ∂B represents the surface of the drop
consisting of points xB, κ is the local curvature, n is the outward normal, and δ(x − xB) is the three
dimensional Dirac delta function. The viscoelastic stress Tp is computed through the conformation
tensor A which satisfies the following equation:

∂A
∂t

+ u · ∇A = ∇u·A + A·(∇u)T − f

λ
(A − I), (3)

where f = L2

L2−tr (A) , μp is the polymeric viscosity, λ is the relaxation time, and L is the finite
extensibility.

The relation between the stress Tp and conformation tensor A is

A =
(

λ

μp f

)
Tp + I. (4)

Therefore, the constitutive equation for the stresses becomes

∂Tp

∂t
+ {

u · ∇Tp − ∇u · Tp − Tp · ∇uT
} +

(5)

f Tp

[
∂

∂t
(1/ f ) + u · ∇ (1/ f )

]
+ f

λ
Tp = f

λ
μpD,

f = L2 + λ/μp
(∑

T p
ii

)
L2 − 3

.

In the limit of L → ∞, we obtain the Oldroyd-B equation. The terms f Tp
[

∂
∂t (1/ f ) + u · ∇ (1/ f )

]
are negligible in our simulations, and by dropping them we arrive at the FENE-MCR equation:

∂Tp

∂t
+ {

u · ∇Tp − ∇u · Tp − Tp · ∇uT
} + f

λ
Tp = f

λ
μpD. (6)

Using the elastic and viscous stress splitting method proposed and developed by us,53 the viscoelastic
stress for FENE-MCR equation is given by(

Tp
)n+1 = [(

Tp
)n − (

μpD
)n]

e−( f/λ)	t + (
μpD

)n

(7)

− λ

f

[
u · ∇Tp − ∇u · Tp − Tp · ∇uT

]n [
1 − e−( f/λ)	t

]
.

Note that Eq. (7) appeared in our recent article46 with a slight typographical error. A front-tracking
finite difference method is used to simulate the drop dynamics.

III. PROBLEM SETUP AND CONVERGENCE

As in our previous study,46 the problem is started by placing a spherical drop of radius a in a
three dimensional rectangular computational domain at t = 0 at a distance hi from the bottom wall
of the domain. The domain is periodic in the flow (x) and the vorticity (z) directions with domain
sizes in those directions Lx = 10a and Lz = 5a, respectively. The size (Ly) in the gradient direction
(y) is 10a with walls at the top and the bottom boundary. The lower wall is stationary and the upper
wall is impulsively started at t = 0 with velocity U creating a shear rate of γ̇ = U/L y . Other details
of the problem setup can be found in our previous publication.46 Nondimensionalizing the problem
using a and γ̇ −1 we obtain the non-dimensional parameters Reynolds number Re = ρma2γ̇ / μm ,
capillary number Ca = μmaγ̇ / �, Deborah number De = λγ̇ , viscosity ratio λμ = μd / μm, density
ratio λρ = ρd / ρm, and β = μpd/μd—the ratio of the polymeric to the total drop viscosity. The total
viscosity of the drop is given as μd = μsd + μpd, sum of the solvent and polymeric viscosities.
We have fixed the density ratio at 1 and L at 20. The values of β and viscosity ratio are 0.5 and 1,
except where we have studied their effects. The code is explicit which restricts us to a small non-zero
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FIG. 1. Quadratic convergence of the viscoelastic algorithm. N is the number of grid points in the x and y directions.
Deformation (top) and velocity (bottom) are plotted for several grid discretizations for De = 1.5, Ca = 0.1 at h/a = 1.5.

Reynolds number, for which we have chosen a value of 0.03. In our recent paper,46 simulation at
Re = 0.03 has shown an excellent match with Stokes flow analytical results and boundary element
(BEM) simulations.

The convergence of the viscoelastic algorithms (Oldroyd-B and FENE-MCR) has been estab-
lished in our previous publications46, 48–52, 54 for several problems related to drop dynamics. The
convergence of drop deformation parameter D = (L − B)/(L + B) (assuming the drop to be an
ellipsoid, L and B are the major and the minor axes) and lateral migration velocity is plotted in
Fig. 1. N is the number of grid points in the x and y directions; z direction has w N/2 grid points.
Inset shows the quadratic convergence of the algorithm. We choose 96 × 96 × 48 discretization in
the flow, gradient and vorticity directions, respectively, with error in velocity less than 4.5%. The
effects of finite domain lengths have been carefully investigated by changing the domain size with
minimal effects from the periodic images of the drop in the x and the z directions. We also verified
that the effect of the upper wall (at a distance of Ly = 10a from the lower one) has very little effects
on the migration velocity for cases considered here (all are restricted to h < 2.5a). Note that recent
simulations explored effects of domain confinement on particle motion in a viscoelastic medium.66

IV. RESULTS

In the Stokes limit, the steady lateral migration Ulat/γ̇ a is known to scale as ∝ Ca(a/h)2. The
proportionality constant was obtained by various investigators through perturbation analysis as well
as BEM simulation—0.6,45 0.583,12 0.44–0.49,28 and 0.41.24 In our recent publication,46 we showed
the same approximate scaling (with constant ∼0.48) for migration velocity, matching very well with
the BEM simulation.28 The deformation of a drop as a function of distance was compared with
the theoretical expression of Shapira and Haber.23 For higher viscosity systems, we compared our
results with BEM simulations of Uijttewaal and Nijhof.27

A. Effects of Deborah number, β, and capillary number

To study the effects of De and β, we have fixed the capillary number at Ca = 0.1. In Fig. 2(a), we
plot the migration velocity as a function of instantaneous distance from the wall for several initial drop
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FIG. 2. (a) Lateral migration velocity vs. the distance of the drop from the wall for varying De and initial drop height hi/a for
Ca = 0.1. Inset plots quasi-steady migration velocity against inverse square of the instantaneous wall distance for different
Deborah numbers. The symbols are data from the simulations and the lines are linear fits. (b) Quasi-steady lateral migration
velocity vs. De for different wall-drop distances for Ca = 0.1.

positions both for the Newtonian and a viscoelastic (De = 1) cases. We notice that a viscoelastic drop
migrates quicker and possesses higher velocity than a Newtonian drop. Note that this is in contrast
to the case of a viscous drop in a viscoelastic matrix (N/V) where matrix viscoelasticity retards drop
migration.46 Also note that the viscoelastic effects are much less pronounced in this (V/N) case than
in the N/V case, as the viscoelasticity here is limited inside the confined space of a drop where the
magnitude of shear remains small giving rise to small viscoelastic stresses. In free shear as well,
the deviation in drop dynamics in the N/V case deviates only by a small amount from the purely
Newtonian (N/N) case.48, 51, 67 Similar to the purely Newtonian28 as well as the N/V system,46 the
viscoelastic drop after a transient period settles in a quasi-steady state of migration where the drop
velocity depends only on the instantaneous separation from the wall h independent of the initial
separation hi; curves for different initial positions collapse on a single curve. Here onward, we
concentrate on the quasi-steady dynamics until in Subsection III C, where we investigate transient
effects for large deformation. The inset of Fig. 2(a) shows the approximate scaling ∼(a/h)2 similar
to the N/N and the N/V cases. It also shows that drop viscoelasticity initially increases migration
velocity and then decreases at higher De. The non-monotonicity is clearly observed in Fig. 2(b)
where we have plotted quasi-steady lateral migration velocities as a function of De for several
instantaneous wall to drop distances all for Ca = 0.1.

In Fig. 3, we plot the vertical component of the viscoelastic force (
∫

∂B(n · Tp)da) where n is
the outward normal to the drop surface ∂B. Fig. 3(a) plots it vs. the instantaneous distance from the
wall for three different initial heights and two Deborah numbers. The force curve for a particular
Deborah number is independent of the initial drop height and depends only on the instantaneous
position. Fig. 3(b) plotting viscoelastic forces vs. De for three different instantaneous heights shows
that the viscoelastic force is nonmonotonic which in turn causes the velocity to be nonmonotonic as
seen in Fig. 2(b).

In Fig. 4(a), we plot deformation for varying De. In free shear, with increasing De, the drop
deformation decreases.48 The decrease in deformation in presence of viscoelasticity is due to the
presence of inhibiting normal stresses at the tip of the drop.48 At higher viscosity ratios the defor-
mation is non-monotonic.51 Shapira and Haber showed that in Stokes flow deformation varies as D
∼ (a/h)3.23 The same scaling is seen in our simulation. Figure 4(b) shows that the inclination angle
of the deformed drop increases with De as in the free shear case and it scales as ∼(a/h)2. Inset of
Figure 4(b) plots the angle of inclination at h/a = 1.4 and 1.75 to show that it varies nonmonoton-
ically with De. We will show that the angle of inclination, a geometric effect, plays critical role in
determining the variation of the migration velocity.
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FIG. 3. (a) Quasi-steady viscoelastic force on the drop vs. the distance of the drop from the wall for varying De and initial
drop height (hi/a) for Ca = 0.1. (b) Quasi-steady viscoelastic net force on the drop vs. De for different drop distances.

FIG. 4. (a) Quasi-steady deformation vs. the inverse of the cube of the drop-to-wall distance for varying De for Ca = 0.1.
The symbols are data from the simulations and the lines are the linear fits. (b) Inclination angle against (a/h)2 for the same
Ca and De. Inset shows inclination relative to the Newtonian value versus De at two drop-wall separations.

FIG. 5. (a) Lateral migration velocity plotted for varying De for different values of β at h/a = 1.75. (b) Lateral migration
velocity as a function of Ca for different Deborah numbers at h/a = 1.7. Inset shows the variation of lateral velocities against
De for several Ca when the velocities are normalized by their respective Newtonian value at h/a = 1.7.
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In Fig. 5(a), we investigate the effects of polymer viscosity in the drop fluid by varying β. The
migration velocity as a function of De at h/a = 1.75 shows that migration velocity increases with
increasing β. Fig. 5(b) shows that Ulat/γ̇ a ∝ Ca similar to the Newtonian case for different De
values. By plotting migration velocity normalized by its Newtonian value in the inset, one sees that
as Ca increases, the viscoelastic effects diminish, as was also seen in N/V case.46

B. A far-field theory of viscoelastic drop migration

In our recent paper on the N/V migration case,46 we developed a far-field theory for drop
migration. Note that the only analytical theory available for effects of viscoelasticity on drop
migration is due to Chan and Leal,45 where the authors used a algebraically demanding perturbation
analysis to the problem. The analysis although rigorous does not elucidate the underlying physics.
The far field theory is based on an earlier idea proposed by Smart and Leighton12 that the migration
arises due to an image stresslet field induced by the drop in presence of the wall. In our previous
paper, we further developed the idea extending it to the case of a viscoelastic matrix.46 We clearly
showed that the stresslet had three contributions due to the interfacial tension, viscosity ratio, and
matrix viscoelasticity. With increasing viscoelasticity, in a viscosity-matched system, the interfacial
contribution increases due to increasing inclination angle. But it is outweighed by the direct reduction
in the non-Newtonian part due to matrix viscoelasticity resulting in an overall decrease in migration
velocity. We also recently developed the same theoretical analysis for migration of a capsule enclosed
by an elastic membrane.68 Here we apply the technique to the viscoelastic drop case. The derivation
is similar to the viscoelastic matrix case but differs in an important way—the argument for the Taylor
series expansion of the single and double layer Green’s functions are far more straight forward here
in V/N case than in the N/V case. Here we only briefly sketch the analysis omitting the details
presented previously.46

We rewrite the governing equations (the equations used for the front tracking simulation) in the
limit of zero Reynolds number as

−∇ p + μm∇2u = 0,

−∇ p̃ + μd∇2ũ = −∇ · (T̃p − μpdD̃) = −∇ · T̃N N ,
(8)

in the matrix and the drop phase, respectively. Variables with a tilde represent field variables inside
the drop. The redefined non-Newtonian stress T̃N N = T̃p − μpdD̃ gives rise to a force term in the
Stokes equation in the drop phase. Following the usual manipulation,46 one can write the solution
outside the drop using a Green’s function formulation

u j (x) = u∞
j − 1

8πμm

∫
Ad

fi (y)Gi j (x, y)d A(y) + 1

8π

∫
Ad

ui (y)Mi jk(x, y)nk(y)d A(y),

(9)
Gi j (x, y) = G F S

i j (x, y) + Gw
i j (x, y), Mi jk(x, y) = M F S

i jk (x, y) + Mw
i jk(x, y),

Ad is the drop surface. fi is the traction on the boundary. We use a proper Green’s function that adds
a contribution Gw

i j (x, y) to the free space Green’s function G F S
i j (x, y), so that Gij(x, y) = 0 on the

wall.69 Mijk(x, y) is the stress due to this Green’s function. This special property of Green’s function
along with the no-slip condition eliminates the surface integral over the wall. Using the second part
of the governing Eq. (8) inside the drop phase, we can write a similar equation for the velocity field
ũ j inside the drop (normal are opposite to the outside field) but evaluating at a point x outside the
drop

0 = 1

8πμd

∫
Ad

f̃i (y)Gi j (x, y)d A(y) − 1

8π

∫
Ad

ũi (y)Mi jk(x, y)nk(y)d A(y)

− 1

8πμd

∫
Vd

T̃ N N
ik (y)Gi j (x, y)dV (y). (10)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

161.253.125.182 On: Wed, 22 Oct 2014 15:34:44



103102-8 S. Mukherjee and K. Sarkar Phys. Fluids 26, 103102 (2014)

Here Vd is the volume of the drop and f̃i = (T̃ v
i j + μpd D̃i j + T̃ N N

i j )n j is the total traction at the
surface. Note that an integration by parts on the original volume integral term has been performed
to convert the divergence term to arrive at (10). From (9) and (10), one obtains

u j (x) = u∞
j − 1

8πμm

∫
Ad

	 fi (y)Gi j (x, y)d A(y) + (1 − λμ)

8π

∫
Ad

ui (y)Mi jk(x, y)nk(y)d A(y)

− 1

8πμm

∫
Vd

T̃ N N
ik (y)Gi j (x, y)dV (y). (11)

Here fi − f̃i
	= 	 f = �(∇ · n)n on Ad . In the far-field, we use a one-term Taylor-series expan-

sion around the center of the drop yc,

Gi j (x, y) = Gi j (x, yc) + ∂Gi j (x, yc)

∂yck
(yk − yck) + O

(
a

|y − yc|
)3

,

(12)

Mi jk(x, y) = Mi jk(x, yc) + O

(
a

|y − yc|
)3

.

For a force-free drop (
∫
Ad

	 f j (y)d A(y) = 0) using incompressibility (
∫
Ad

uk(y)nk(y)d A(y) = 0), we

obtain

u j (x) = u∞
j (x) − 1

8πμm

∂Gi j (x, yc)

∂yck
×

⎧⎨
⎩�

∫
Ad

(
δik

3
− ni nk

)
d A(y) − μm

(
1 − λμ

)

×
∫
Ad

(ui nk + ukni )(y)d A(y) +
∫
Vd

T N N ′
ik (y)dV (y)

⎫⎬
⎭

= u∞
j (x) − 1

8πμm

∂Gi j (x, yc)

∂yck

(
Sint ′

ik + Svrat ′
ik + SN N ′

ik

)

= u∞
j (x) − 1

8πμm

∂Gi j (x, yc)

∂yck

(
Sint

ik + Svrat
ik + SN N

ik

)
, (13)

where

Sint′
ik = �

∫ (
δik

3
− ni nk

)
d A(y),

Svrat ′
ik = −μm

(
1 − λμ

) ∫
Ad

(ui nk + ukni )(y)d A(y), (14)

SN N ′
ik =

∫
Vd

T N N ′
ik (y)d

are the contributions to the stresslet due to the interfacial tension, viscosity ratio, and the non-
Newtonian effects. These terms without primes in the last expression in (13) represent their traceless
forms (due to incompressibility, ∂Gik(x, yc)/∂yck = 0; the trace of the stresslet does not contribute).
An identity due to Rosenkilde70 is used to transform the interfacial part Sint

ik to the interface tensor∫
(δik/3 − ni nk) d A(y) first so defined by Batchelor.71

Using an expression for the image propagator near a rigid wall12 with normal n, one obtains
from (13),

udrift
j n j = − 1

8πμm

(
9

8h2

) (
Sint

ik + Svrat
ik + SN N

ik

)
ni nk,

(
a

h

)2

� 1. (15)
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For the case here with the wall at x2 = y = 0, the migration velocity is

Ulat = − 1

8πμm

(
9

8h2

) (
Sint

22 + Svrat
22 + SN N

22

)
. (16)

Note that the non-Newtonian part SN N
22 can be shown to be arising from the difference between the

first and the second normal stress differences:46

SN N
22 =

∫
Vd

(
T N N ′

22 − T N N ′
22 + T N N ′

11 + T N N ′
33

3

)
dV =

∫
Vd

(
N N N ′

1 − N N N ′
2

3

)
dV . (17)

In (16), the second term is absent for a viscosity matched system (λμ = 1). For the N/V case,46 we
showed the theory to be only valid away from the wall. We therefore choose a distance of h = 2.45a
where Newtonian comparison works well for examining the effects of the viscoelasticity.

In Fig. 6(a), we plot −Sint
22 , which is the only contribution for a Newtonian system, showing that it

varies nonmonotonically with increasing viscoelasticity—first increases and then decreases—similar
to the migration velocity. −Sint

22 is a purely geometric quantity and is determined by the instantaneous
drop shape. Increasing deformation and decreasing angle of inclination increase it. We saw in Figure 4
that with increasing De, the deformation decreases monotonically but inclination angle shows a

FIG. 6. (a) Interfacial part of the stresslet as a function of De for two values of Ca at h/a = 2.45. (b) Inclination angle for
the same cases; inset shows the inclination normalized by its Newtonian value. (c) Non-Newtonian part of the stresslet for
the same cases. (d) Migration velocity from the far-field theory (Th) is compared with those from the simulations (Sim) for
varying De at three Ca values.
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nonmonotonic variation with De first decreasing and then increasing. Here, we again show the
nonmonotonicity of the angle for several Ca values in Fig. 6(b). The non-Newtonian part −SN N

22
shown in Fig. 6(c) adds a positive contribution to the migration velocity. Note that for the N/V case,
−SN N

22 was negative which thereby retarded migration away from the wall.46 Finally, in Fig. 6(d),
we compare the lateral velocities for viscoelastic cases between the theory and simulations for three
values of Ca. The theory matches well with the simulation, capturing the nonmonotonic variation,
the slight difference arising from the finite Reynolds number (Re = 0.03) of our simulation. In the
N/V case investigated previously, the inclination angle decreases with increasing De; the geometric
stresslet −Sint

22 due to interfacial tension increases, but the overall velocity variation with De is
dictated by the non-Newtonian contribution −SN N

22 that decreases with De. Here the nonmonotonic
velocity variation with De is dictated by the interfacial part −Sint

22 caused by the variation in the angle
of inclination.

C. Effects of viscosity ratio and super-critical Ca for breakup

In this section, we very briefly study the effects of viscosity ratio to show how it can significantly
affect the dynamics especially for those capillary numbers where viscosity matched system gives rise
to large deformation and eventual breakup. In Fig. 7(a), we plot the lateral migration velocities for
varying De for Ca = 0.5 at a high viscosity ratio λμ = 10. This is above the critical capillary number

FIG. 7. Evolution of (a) lateral migration and (b) deformation for varying De at Ca = 0.5 and λμ = 10. Inset of (a) plots
the instantaneous normalized velocity (with respect to the Newtonian value) vs. De at h/a = 1.75. (c) Migration velocity as a
function of Ca for different De values at h/a = 1.75 and λμ = 10.
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FIG. 8. Evolution of (a) lateral migration, (b) deformation for varying De at Ca = 0.5 and λμ = 3.5. (c) Drop shapes for
De = 0 and 0.5 before and after the minima; time instants are shown and also marked in part (a).

for breakup for viscosity matched Newtonian system. Yet the drop shapes here remain bounded due
to the stabilizing effects of the drop phase viscoelasticity and the higher viscosity ratio. We notice that
the migration velocity increases monotonically with De, unlike that of a viscosity matched system
where the velocity is non-monotonic (Fig. 2(b)). Inset plots the instantaneous velocities (normalized
by the Newtonian value) as a function of De, at h/a = 1.75. Also, note that the increase in velocity
relative to the Newtonian case is much larger than the viscosity matched system—more than 100%
compared to 20% in Fig. 5(a) β = 0.5 case. The evolution of drop deformation plotted in Fig 7(b)
shows that increasing viscoelasticity decreases the initial overshoot in deformation. Fig. 7(c) shows
that at this high viscosity ratio of 10, migration velocity varies nonmonotonicaly with Ca for all De
values unlike the viscosity matched case. Such non-monotonicity for high viscosity ratio cases was
also observed in a Newtonian system.27

In Fig. 8(a), we plot the time evolution of the lateral velocity for Newtonian and several Deborah
number cases for the same Ca = 0.5 and an intermediate viscosity ratio λμ = 3.5. Corresponding
deformation is plotted in Fig. 8(b). At this intermediate viscosity ratio, for the Newtonian case and
De = 0.5, drops experience breakup, and therefore do not reach a quasi-steady state. On the other
hand, higher Deborah number cases De = 1.5 and 2.5 result in bounded shapes. For the lower
two Deborah cases, the sudden increase in the velocity after reaching a minimum is because of the
necking that forms at large deformation. Similar behavior was also observed for N/V systems.46 In
Fig. 8(c) drop shapes are shown for De = 0 and 0.5 before and after the velocity minimum (marked
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in Fig. 8(a)). After the minimum, the drop shapes are more of two droplets connected by a thread
like structure.

V. CONCLUSIONS

The dynamics of a migrating viscoelastic (FENE-MCR) drop in a Newtonian liquid subjected
to a wall bounded shear is numerically investigated. Similar to a purely Newtonian system, the drop
settles down to a quasi-steady motion where the dynamics is independent of the initial position and
the velocity approximately scales with capillary number and the inverse square of the separation from
the wall. With increasing Deborah number, the velocity initially increases, but eventually decreases
at high values of Deborah or Wisssenberg number. Using a Green’s function formulation of the
problem, we have developed a far-field analytical expression of the migration velocity. It describes
the migration as caused by the stresslet field due to the drop in presence of the wall. The analytical
expression contains a distinct component to the stresslet field contributed by the differences between
the first and the second normal stress differences inside the drop. The theory matches with the
simulated migration velocity capturing the nonmonotonic trend. The nonmonotonicity is caused by
the variation in drop inclination angle. Viscoelastic effects on migration are larger at high viscosity
ratios; it can prevent drop break up for drops that would break in viscosity-matched system. It can
also generate nonmonotonic variation of velocity with capillary number which has also been noticed
for Newtonian systems.
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