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A recent study [Katiyar and Sarkar (2011). J. Acoust. Soc. Am. 130, 3137–3147] showed that in

contrast to the analytical result for free bubbles, the minimum threshold for subharmonic generation

for contrast microbubbles does not necessarily occur at twice the resonance frequency. Here

increased damping—either due to the small radius or the encapsulation—is shown to shift the mini-

mum threshold away from twice the resonance frequency. Free bubbles as well as four models

of the contrast agent encapsulation are investigated varying the surface dilatational viscosity.

Encapsulation properties are determined using measured attenuation data for a commercial contrast

agent. For sufficiently small damping, models predict two minima for the threshold curve—one at

twice the resonance frequency being lower than the other at resonance frequency—in accord with

the classical analytical result. However, increased damping damps the bubble response more at

twice the resonance than at resonance, leading to a flattening of the threshold curve and a gradual

shift of the absolute minimum from twice the resonance frequency toward the resonance frequency.

The deviation from the classical result stems from the fact that the perturbation analysis employed

to obtain it assumes small damping, not always applicable for contrast microbubbles.
VC 2012 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4757099]
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I. INTRODUCTION

Micron-size encapsulated bubbles (radius< 10 lm) are

used in diagnostic ultrasound imaging as contrast enhancing

agents (de Jong, 1996; Ferrara et al., 2007; Goldberg et al.,
2001; Tang et al., 2011). They generate subharmonic signals

that are utilized for subharmonic imaging—imaging at fre-

quencies half that of the excitation (Forsberg et al., 2000;

Shankar et al., 1998; Shankar et al., 1999). Variation of the

subharmonic response with ambient pressure is also being

investigated for developing a noninvasive organ-level blood

pressure monitoring technique (Adam et al., 2005; Andersen

and Jensen, 2010; Dave et al., 2011; Forsberg et al., 2005;

Frinking et al., 2010; Katiyar et al., 2011; Leodore et al.,
2007; Shi et al., 1999). Therefore, accurate prediction of the

subharmonic response from contrast microbubbles is a topic

of great interest (Eller and Flynn, 1968; Faez et al., 2011;

Katiyar and Sarkar, 2011; Kimmel et al., 2007; Paul et al.,
2010; Prosperetti, 1976, 1977; Sijl et al., 2010). Bubbles

generate subharmonic response only when excited above a

threshold pressure. It is widely believed that the minimum

threshold for subharmonic generation occurs at twice the res-

onance frequency (2f0)—a result obtained using a perturba-

tive analysis on free bubble dynamics (Eller and Flynn,

1968; Prosperetti, 1977). In a recent paper, hereafter referred

to as KS1 (Katiyar and Sarkar, 2011), we investigated a

number of existing models for encapsulated contrast micro-

bubbles to show that the minimum threshold for subhar-

monic generation does not occur at 2f0; it occurs over a

range of frequencies from f0 to 2f0. Specifically, for some

models, the minimum threshold occurs at f0. Here, we fur-

ther investigate this phenomenon to understand the apparent

contradiction. Specifically, we examine the role of enhanced

damping due to the encapsulation of a contrast microbubble

on subharmonic threshold.

In KS1, we investigated the frequency-dependent

subharmonic threshold according to six different models of

contrast microbubbles—(1) Newtonian model, (2) de Jong

model, (3) Church–Hoff model, (4) constant surface elas-

ticity model, (5) Marmottant model, and (6) strain-

softening exponential surface elasticity model (Katiyar and

Sarkar, 2011). The Newtonian interfacial rheological model

is the first interfacial rheological model proposed in the

contrast agent literature (Chatterjee and Sarkar, 2003).

Interfacial rheological models treat an encapsulation as a

zero-thickness complex interface—an appropriate approach

keeping in view the wide disparity of length-scales between

the encapsulation (approximately nanometer thickness)

and the overall microbubble (approximately micrometer

radius). In this approach, the encapsulation stresses are

determined by the intrinsic interfacial rheology (as opposed

to the bulk rheology of the material of the encapsulation).
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In recent years, other interfacial rheological models have

been proposed to incorporate various aspects of the encap-

sulation dynamics. In KS1, all six models, including those

due to Church–Hoff (Church, 1995; Hoff et al., 2000) and

de Jong (de Jong et al., 1994), which were not originally

interfacial models, were presented in an effective interfa-

cial rheology form. The bubble dynamics was described

by a generalized Rayleigh–Plesset (RP) equation, with an

effective surface tension cðRÞ and an effective dilatational

surface viscosity jsðRÞ (R is the instantaneous bubble ra-

dius). Each model was numerically investigated to find the

minimum subharmonic threshold for Sonazoid (GE Health

Care, Oslo, Norway) contrast microbubble. As mentioned

previously, the minimum threshold for many models was

found to occur not at 2f0, but over a range from f0 to 2f0. We

found that the form of cðRÞ plays a crucial role. The constant

surface elasticity model (Sarkar et al., 2005) and the de Jong

model predict unusually high values of subharmonic threshold

with a minimum at 2f0. However, the Marmottant model

(Marmottant et al., 2005), which also assumes a constant sur-

face elasticity but only between two radius limits—an upper

limit where the encapsulation ruptures and a lower limit

where the encapsulation buckles—predicts a valley of minima

from f0 to 2f0. The strain-softening exponential surface elas-

ticity model proposed recently by Paul et al. (2010), as well

as the Church–Hoff model, have natural upper limits on sur-

face tension. Both models show behaviors similar to the Mar-

mottant model. We concluded that the absence of an upper

limit on surface tension results in a very high subharmonic

threshold near resonance, and correspondingly the minimum

threshold is obtained at 2f0. However, introducing a maxi-

mum limit on surface tension—due to encapsulation rupture

at large extension—lowers the threshold at resonance, and

leads to comparable thresholds over the range.

In KS1, the interfacial dilatational viscosity js

(assumed constant for each model except for the Church–

Hoff model, where it varies naturally with radius) repre-

sented an additional damping contribution due to the encap-

sulation. It adds to the other three damping elements

present in the case of a free bubble arising from liquid vis-

cosity, thermal effects and acoustic radiation. The thermal

damping is often negligible for contrast microbubbles. Note

that all three other damping terms [see the upcoming

Eq. (3)] increase with decreasing bubble radius, thereby

resulting in a large damping for contrast agents due to their

small (micrometer) size. For the bubble considered

(R0¼ 3 lm) in KS1 (although the average radius of a Sona-

zoid bubble is 1.6 lm, the representative radius of the bub-

bles responsible for subharmonic generation was shown in

KS1 to be 3 lm), the different nondimensional damping

terms were dliquid ¼ 0:04 for the liquid, dradiation ¼ 0:006 for

radiation and dencapsulation ¼ 0:13 for the encapsulation. The

damping due to the encapsulation is an order of magnitude

higher than the other two present in a free bubble. We note

that the prediction of minimum threshold being at twice the

linear resonance frequency was obtained using a perturba-

tion analysis for a lightly damped system. The result repre-

sents the physics that a system would naturally generate

transient response at its resonance frequency, which is

amenable to an easy amplification by nonlinear energy

transfer. For bubble dynamics, the analytical result (Eller

and Flynn, 1968; Prosperetti, 1977) was obtained by a per-

turbative method that specifically assumed small bubble

oscillations excited at frequencies near 2f0. However, in

actual experiments both in vitro and in vivo, as well as in

clinical setting, ultrasound pulses are applied containing a

wide band of frequencies. Also, as the excitation frequency

approaches resonance, the oscillations are not small and

perturbative result might lose its validity. Prosperetti

(1977) reported a strong sensitivity of subharmonic thresh-

old on damping near twice the resonance frequency. There-

fore, for an encapsulated contrast microbubble with its

large damping, one has to rely on numerical simulation for

accurate prediction of its dynamics. Finally, Faez et al.
(2012) very recently have found that increased viscosity in

a chicken embryo led to a lower subharmonic generation

threshold for subharmonic generation for a lipid coated

microbubble at f0 than at 2f0—at 300–400 kPa excitation,

subharmonic response was recorded at the resonance fre-

quency, but not at twice its value. Also note that in our pre-

vious experimental investigation of a Sonazoid suspension

(Paul et al., 2010; Sarkar et al., 2005), although the mini-

mum threshold for subharmonic generation was not investi-

gated, the subharmonic threshold was seen to steadily

decrease in the range of frequencies considered from

2 MHz to 6 MHz indicating the minimum threshold to be

away from twice the resonance frequency.

In this paper, we numerically investigate the (1) free bub-

ble model, (2) Newtonian model, (3) Church–Hoff model, (4)

Marmottant model, and (5) strain-softening exponential sur-

face elasticity model. The apparent contradiction with the

classical subharmonic threshold result seen in KS1, gives rise

to the following consideration. In KS1, we used f0 of the

undamped system corresponding to the bubble dynamics.

However, the frequency of maximum response of a damped

mass-spring system typically decreases with increasing

amount of damping d. One possible explanation of the obser-

vation in KS1 of minimum threshold at frequencies lower

than 2f0 in contrast to classical result can be sought in this

decrease in natural frequency. We first investigate this hypoth-

esis in the following. In the next section, we briefly describe

these models and discuss different damping mechanisms. In

Sec. III, we show how variation in initial bubble radius and

interfacial dilatational viscosity of an encapsulation affect the

total damping, as well as the subharmonic threshold. Finally,

Sec. IV summarizes the results. As in KS1, bubble breakup is

not considered, although at larger excitation, bubbles undergo

breakup by distinct mechanisms (Chatterjee et al., 2005a).

II. MATHEMATICAL FORMULATION AND NUMERICAL
SOLUTION

The models—free, as well as the five encapsulated con-

trast microbubbles—have been described in detail in KS1.

Here, we briefly repeat the description by stating the equa-

tions for the sake of completeness. A compressible form of

the RP equation is used to describe the time evolution of the

radius Rof a contrast microbubble,
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q R €Rþ 3

2
_R

2
� �

¼ PG0

R0

R

� �3k

1� 3k _R

c

� �
� 2

R
cðRÞ

� 4 _R

R2
js� 4l

_R

R
� p0þ pA; (1)

where R0 is the initial bubble radius, _R and €R are the first- and

the second-order time derivatives of the bubble radius R, PG0
is

the initial gas pressure inside the bubble, k is the polytropic

exponent, q is the liquid density, l is the liquid viscosity, c is the

gas–liquid surface tension, p0 is the ambient pressure, pA is the

excitation pressure with amplitude PA, and c is the sound veloc-

ity in liquid. Gas diffusion from the bubble is neglected. Surface

tension cðRÞ and the interfacial dilatational viscosity js charac-

terize the interfacial rheology of the bubble encapsulation.

A. Free bubble and Newtonian
(Chatterjee and Sarkar, 2003) model

For the Newtonian model,

cðRÞ ¼ c; jsðRÞ ¼ js; (2)

both are constant. In the case of a free bubble js ¼ 0 and

cðRÞ ¼ cw, surface tension at the gas–water interface. From

the linearized from of Eq. (1), one obtains the nondimen-

sional damping constant ðdÞ and the linear resonance fre-

quency ðf0 ¼ x0 = 2pÞ,
d ¼ dliquid þ dencapsulation þ dradiation

¼ 4l

qx0R2
0

þ 4js

qx0R3
0

þ 3kp0

qx0R0c
; (3)

f0 ¼
1

2pR0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

q
3kp0 þ

2c
R0

ð3k � 1Þ
� �s

: (4)

B. Church–Hoff model (Church, 1995; Hoff et al., 2000)

The Church–Hoff model is as follows:

cðRÞ ¼ 6Gsdsh0

R2
0

R2
1 � R0

R

� �
; jsðRÞ ¼ 3lsdsh0

R2
0

R2

(5)

Note that it models the encapsulation as a layer of finite

thickness dsh0
containing a viscoelastic material with shear

modulus Gs and shear viscosity ls. It has been put in an

interfacial rheological form. The nondimensional damping

constant remains the same as in Eq. (3), except of course

js—js � 3lsdsh0
for small amplitude oscillation—decreasing

with increasing radius (shear thinning). The resonance

frequency is

f0 ¼
1

2pR0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

q
3kp0 þ 12Gs

dsh0

R0

� �s
: (6)

C. Marmottant model (Marmottant et al., 2005)

The Marmottant model is as follows:

cðRÞ ¼

0 for R � Rbuckling

v
R2

R2
buckling

� 1

 !
for Rbuckling � R � Rrupture

cw for R � Rrupture:

; jsðRÞ ¼ js

8>>>><
>>>>:

(7)

Here v is the elastic compression modulus, Rbuckling

¼ R0½1þ cðR0Þ=v��1=2
is the buckling radius and Rrupture

¼ Rbuckling½1þ cx=v�1=2
is the rupture radius. The damping

remains the same as in Eq. (3). The resonance frequency for

the Marmottant model (Marmottant et al., 2005; van der

Meer et al., 2007) is

f0 ¼
1

2pR0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

q
3kp0 �

2cðR0Þ
R0

ð3k � 1Þ þ 4v
R0

� �s
: (8)

Note that as discussed in KS1, if the bubble initially is in a

buckled state, the surface tension there is not differentiable

and therefore, there is no analytically defined resonance fre-

quency, and one has to numerically determine the frequency

of maximum response.

D. Exponential elasticity model (EEM)
(Paul et al., 2010):

The exponential elasticity model is as follows:

cðRÞ ¼ c0 þ Esb; Es ¼ Es
0b exp ð�asbÞ; jsðRÞ ¼ js:

(9)

Here b ¼ ðR2 � R2
EÞ =R2

E is the change in area fraction and

RE is the equilibrium radius with zero elastic stress,

RE ¼ R0 1þ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4c0as =Es

0

p
2a

 !" #�1=2

; (10)

c0 is the constant surface tension in the undeformed state, and

Es
0 and as are model constants. As before, damping remains

the same as in Eq. (3). The linear resonance frequency
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f0 ¼
1

2pR0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

q
3kp0 þ

2Es
0

R0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4c0as =Es

0

p
as

 !
ð1þ 2as �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4c0as =Es

0

q
Þ

 !vuut : (11)

We have previously reported the procedure to determine

the values of the material parameters for a contrast agent

according to a model. Experimentally measured attenua-

tion data for that contrast agent is used for the procedure

(Chatterjee et al., 2005b; Paul et al., 2010). The parameter

values for Sonazoid bubbles are given in Table I. Please

note that KS1 reported erroneously js¼ 1� 10�8 N s/m. It

should be 1.2� 10�8 N s/m as here. In the following, we

use this set as a reference and change them to study their

effects.

The scattered pressure PsðtÞ due to a contrast micro-

bubble is (Paul et al., 2010)

PSðr; tÞ ¼ q
R

r
ð2 _R

2 þ R €RÞ: (12)

The bubble dynamics Eq. (1) is solved using a stiff solver

(ODE15S) in MATLAB
VR

(The MathWorks Inc., Natick, MA)

with initial conditions R ¼ R0 and _R ¼ 0, and parameter

values q¼ 1000 kg/m3, l¼ 0.001 kg/m s, and c¼ 1485 m/s.

We obtain the fast Fourier transform of the post-transient

radius–time curve. For fundamental and subharmonic

responses, we use the peak values corresponding to those

frequencies. The excitation frequency is normalized by the

model-specific linear resonance frequency mentioned previ-

ously. With increasing excitation pressure, the subharmonic

component appears; it grows quickly followed by gradual

saturation and eventual disappearance. The excitation pres-

sure just above where a distinct subharmonic peak appears

and on further increase in excitation pressure shows charac-

teristics of subharmonic response is selected as the subhar-

monic threshold.

III. RESULTS AND DISCUSSION

A. Damped resonance frequency: Can it explain
the shift in threshold minimum?

In KS1, we found that minimum threshold for subhar-

monic generation occurs over a range of frequencies from

f0 and 2f0 in contrast to the classical perturbative result

that predicted it to occur at 2f0. From introductory physics

texts, it is well known that the infinite response at resonance

of an undamped linear mass-spring system becomes

bounded when damping is introduced. At the same time, the

maximum response decreases and occurs at progressively

lower frequencies—damped resonance frequency f R
r —with

increasing damping:

f R
r ¼ f0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d2

2

� �s
: (13)

Therefore, it is natural to assume that the reduced natural fre-

quency (and thereby a lower value of twice the resonance

frequency) might explain the numerically simulated lower

frequencies for minimum subharmonic threshold in KS1.

However the above-presented argument holds for the oscilla-

tor’s primary variable—here the radius-time response of a

bubble. However, we are not investigating the subharmonic

component of the radius-time response, but that of the scat-

tered pressure. The scattered pressure is related to the radius

by Eq. (12). Introducing RðtÞ ¼ R0 þ e expði2pftÞ, we note

that

PSðr; tÞ ¼
q
r
�R2

0ð2pf Þ2eþ Oðe2Þ
n o

: (14)

The maximum radius response (eðf Þ) from the linearized dy-

namics is predicted to occur at f R
r , where de = df ¼ 0. How-

ever, the corresponding maximum pressure occurs at a

frequency f Ps
r where dðef 2Þ = df ¼ 0 obtaining

f Ps
r ¼

f0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d2

2

� �r : (15)

Clearly, the damped resonance frequency for the pressure f Ps
r

is greater than f0. The numerical simulation also shows (not

shown here for brevity) that the frequency where the funda-

mental component of the pressure achieves its maximum is

higher than f0. The damped resonance frequency cannot

explain the downshift of the frequency of minimum thresh-

old for subharmonic generation from 2f0.

B. Subharmonic threshold for a free bubble

In KS1, we saw that the threshold for subharmonic gen-

eration for a free bubble follows the classical theory; it

TABLE I. Characteristic properties of Sonazoid microbubble according to

various encapsulation models.

Encapsulation model

Contrast agent

(gas/encapsulation) Parameters

Newtonian model

(Chatterjee and Sarkar,

2003)

Sonazoid

(C4F10/lipid)

c¼ 0.6 N/m,

js¼ 1.2� 10�8 N s/m,

and k¼ 1.07

Church–Hoff model

(Hoff et al., 2000)

Sonazoid

(C4F10/lipid)

Gs¼ 52 MPa,

ls¼ 0.99 N s/m2,

dsh0
¼ 4 nm, and k¼ 1.07

Marmottant model

(Marmottant et al.,

2005)

Sonazoid

(C4F10/lipid)

cðR0Þ¼ 0.02 N/m,

v¼ 0.53 N/m,

js¼ 1.2� 10�8 N s/m,

and k¼ 1.07

Viscoelastic exponential

elasticity model (EEM)

(Paul et al., 2010)

Sonazoid

(C4F10/lipid)

c0¼ 0.019 N/m,

Es
0¼ 0.55 N/m, a¼ 1.5,

js¼ 1.2� 10�8 N s/m,

and k¼ 1.07
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occurs at 2f0 for the values of the parameters chosen there

and radius 1 lm�R0� 5 lm. In Fig. 1, we show that the

damping constant d increases sharply when the radius is

decreased below 1 lm. In the inset, we notice that the

minimum subharmonic threshold at 2f0 for R0¼ 0.5 lm

(d¼ 0.265) shifts to f0 for R0¼ 0.2 lm (d¼ 0.462). For the

intermediate radius R0¼ 0.3 lm (d¼ 0.364), the thresholds at

f0 and 2f0 do not differ much. The increased damping at these

submicron radii damps the nonlinear oscillations at 2f0 lead-

ing to this shift. We further refine our conclusion in KS1, in

that even for a free bubble the threshold can deviate from

classical result, when the damping is significant, e.g., in

extremely small bubbles.

To understand the governing mechanism and the role of

damping in subharmonic generation, we plot the maximum

radius (after steady state oscillation sets in) as a function of

frequency in Fig. 2. Specifically, we interrogate and compare

radius responses at f0 and at 2f0. Note that such curves were

simulated by Lauterborn (1976), where the radial response

was related to the harmonic, subharmonic, and ultrahar-

monic responses of various orders. As was noted there, the

response near f0 relates to the main resonance (1/1), and

the one near 2f0 relates to [1/2] subharmonic response. In

Fig. 2(a), we investigate it varying R0 at an excitation of

100 kPa. From Fig. 1, this excitation is below the threshold

for subharmonic generation for bubble with R0� 0.5 lm. In

KS1, we showed that at 100 kPa, one gets a subharmonic

response only near 2f0 that is also only for larger bubbles;

there is subharmonic at R0� 2 lm (d� 0.1), but not at

R0¼ 1.6 lm. At 100 kPa, Fig. 2(a) shows distinct peaks near

f0 for all bubbles and near 2f0 for bubbles with R0� 2 lm.

The peak response at f0 is larger than that at 2f0 for all the

radii considered (1 lm�R0� 5 lm). The subharmonic

response for R0� 2 lm shown at KS1 correlates with the ex-

istence of a peak at 2f0; the peak disappears for R0� 1.6 lm

in conformity with the absence of a subharmonic response in

the spectrum. We conclude that subharmonic is generated by

large oscillations at 2f0 for the larger bubbles; for smaller

bubbles, these oscillations are damped and subharmonic

signal is lost. In Figs. 2(b)–2(d), we investigate three sub-

micron radii to examine how increased damping at these

smaller radii affects the radial response. We note that the

peaks are progressively damped with decreasing radius. For

R0¼ 0.5 lm [Fig. 2(b)], there is no distinct peak near f0, but

one near 2f0. The peak near 2f0 makes it easier to generate

subharmonic signal near 2f0. In Figs. 2(c) and 2(d), for

R0¼ 0.3 lm and R0¼ 0.2 lm peaks at f0 and 2f0 are dimin-

ished, and they merge into a flat rise over a broad frequency

range. This small rise in the curves coincides with the

appearance of a subharmonic signal. For instance, for

R0¼ 0.3 lm and R0¼ 0.2 lm, there is no rise in the curves at

PA¼ 700 kPa and PA¼ 1.15 MPa, respectively; for these cases

there is no subharmonic response at these pressures (Fig. 1).

C. Subharmonic threshold for encapsulated
microbubble

1. Newtonian model

The Newtonian model (Chatterjee and Sarkar, 2003) dif-

fers from a free bubble due to the existence of a dilatational

viscosity js ¼ 1:2� 10�8 N s=m and a larger value of sur-

face tension c ¼ 0.6 N/m. Their behaviors are qualitatively

similar (Fig. 3). In Fig. 3, at fixed js ¼ 1:2� 10�8 N s=m,

we plot a subharmonic threshold for 1.6 lm�R0� 5 lm.

For bubbles of radius 2.5 lm and higher, the global mini-

mum of the subharmonic threshold is obtained near 2f0.

However, for a 2 lm radius bubble ðd ¼ 0:382Þ, the thresh-

olds are comparable in the frequency range (1� f/f0� 2).

And for an even smaller bubble of R0¼ 1.6 lm the minimum

threshold appears near f0. For smaller bubbles the damping

due to surface dilatational viscosity significantly increases

the total damping, in turn resulting in lower subharmonic

thresholds near f0. To further highlight the role of increased

damping in the shift of minimum threshold from 2f0 to f0, we

varied the dilatational surface viscosity ðjsÞ for a microbub-

ble of radius 1.6 lm and plotted the frequency-dependent

subharmonic threshold in Fig. 4. Note that as js decreases

significantly from the predicted value of 1.2� 10�8 N s/m,

the global minimum in subharmonic threshold again appears

near 2f0in accord with classical perturbative result.

Figure 5 shows the three damping components—due to

liquid viscosity, acoustic radiation, and the encapsulation—

as a function of initial radius R0. For a low value of dilata-

tional viscosity js ¼ 2� 10�9 N s=m, all three damping

mechanisms are comparable. However, as js increases,

damping due to the encapsulation rises significantly for

smaller radii values (e.g., for R0¼ 1.6 lm shown by the

dashed vertical line). This increased damping leads to thresh-

olds for subharmonic generation with no distinct minimum

near 2f0, but a valley of similar values over the range

1� f/f0� 2 as shown in Fig. 4. Note that the plot holds also

for Marmottant and exponential elasticity models, both hav-

ing constant js.

Note that for R0¼ 1.6 lm, the number average radius of

Sonazoid, this model predicts a very high threshold excita-

tion for subharmonic generation of 1.4 MPa (Fig. 3) in con-

trast to the experimentally observed value of �200–350 kPa

FIG. 1. Variation of the total damping constant with initial bubble radius for

free bubbles. (Inset) Variation of subharmonic threshold of submicron size

free bubbles with normalized excitation frequency.

3580 J. Acoust. Soc. Am., Vol. 132, No. 5, November 2012 A. Katiyar and K. Sarkar: Subharmonic threshold of contrast agents

A
u

th
o

r'
s 

co
m

p
lim

en
ta

ry
 c

o
p

y



FIG. 2. Frequency response curves for a free bubble (a) at an acoustic pressure¼ 100 kPa for different initial radii, (b) for R0¼ 0.5 lm, (c) R0¼ 0.3 lm, and

(c) and (d) R0¼ 0.2 lm for different acoustic pressures.

FIG. 3. Variation of the subharmonic threshold of a Sonazoid microbubble

[R0¼ 5 lm ( ), R0¼ 4 lm ( ), R0¼ 3 lm ( ),

R0¼ 2.5 lm ( ), R0¼ 2 lm ( ), R0¼ 1.6 lm ( )]

with normalized excitation frequency as predicted by the Newtonian interfa-

cial rheological model.

FIG. 4. Variation of the subharmonic threshold of a Sonazoid microbubble

(R0¼ 1.6 lm) with normalized excitation frequency as predicted by the

Newtonian interfacial rheological model for different surface dilatational

viscosity ðjsÞ of the encapsulation.
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at 2–6 MHz (Sarkar et al., 2005). However, a simulated

threshold using the entire bubble distribution of Sonazoid

matches well with experiment (Paul et al., 2010). As was

noted in KS1, the subharmonic response generated at these

low excitations is generated by relatively small number of

larger bubbles in the bubble distribution having a representa-

tive radius of 3 lm (the subharmonic response weighted

average of Sonazoid). In KS1, we showed the effects of ra-

dius variation on the excitation threshold. In the following,

we use R0¼ 3 lm, and investigate primarily the effects of

surface dilatational viscosity.

2. Church–Hoff model

Church–Hoff model is the first rigorous model of the

encapsulation where the encapsulation is treated as a finitely

thick (dsh0
¼ 3–20 nm) layer comprising of a viscoelastic ma-

terial characterized by bulk material properties—shell shear

modulus Gsand shear viscosity ls (Church, 1995; Hoff et al.,
2000). In KS1, we showed that written in an interfacial rheo-

logical framework, it has a natural upper limit to its surface

tension. Unlike other models, the effective surface dilata-

tional viscosity for this model decreases with the radius. In

Fig. 6, we see that similar to the Newtonian model, increas-

ing surface dilatational viscosity leads to a flattening of the

threshold curve from having two distinct minima—one at 2f0

deeper than the second one at f0—to a broader valley around

both values.

3. Marmottant model

Marmottant model (Marmottant et al., 2005) is an inter-

facial rheological model having a dilatational surface viscos-

ity and a dilatational surface elasticity, the latter describing

the rate of change of surface tension with changing area frac-

tion. The model is identical to the constant elasticity model

proposed shortly earlier (Sarkar et al., 2005), except for the

following. Unlike a constant elasticity model, the surface

tension in the Marmottant model has an upper (ruptured state

of the encapsulation with surface tension the same, assuming

the value of an air–water interface) and a zero lower (buckled

state of the encapsulation) limits. In Fig. 7, we plot the

subharmonic threshold predicted by the Marmottant model

for varying dilatational viscosity js. As also seen in KS1, the

threshold minimum is flatter, and similar to the other models

the threshold increases with js. Due to the nonanalytic

lower limit of this model, it predicts some distinct

behaviors—for lower jsvalues (js ¼ 6� 10�9 N s=m and

js ¼ 1� 10�9 N s=m), there is a much lower threshold in the

range 1.5� f/f0� 1.9. Such an unusually lower threshold has

FIG. 6. Variation of the subharmonic threshold of a Sonazoid microbubble

(R0¼ 3 lm) with normalized excitation frequency as predicted by the

Church–Hoff model for different bulk shear viscosity ðlsÞ of the encapsulat-

ing shell.

FIG. 7. Variation of the subharmonic threshold of a Sonazoid microbubble

(R0¼ 3 lm) with normalized excitation frequency as predicted by the Marmot-

tant model [js ¼ 1� 10�9 N s=m ( ), js ¼ 1� 10�9 N s=m (lower

threshold) (———), js ¼ 6� 10�9 N s=m ( ), js ¼ 6� 10�9 N s=m

(lower threshold) (- - - - -), js ¼ 1:2� 10�8 N s=m ( ), js

¼ 2� 10�8 N s=m ( ), and js ¼ 3� 10�8 N s=m ( )].

FIG. 5. Variation of damping constants with initial bubble radius for a Sona-

zoid microbubble as predicted by the Newtonian interfacial rheological

model for different surface dilatational viscosity ðjsÞ of encapsulation.
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been seen experimentally (Frinking et al., 2010). The subhar-

monic response as a function of excitation for three different

frequencies is shown in Fig. 8. It shows for f/f0¼ 1.7, a value

within the above-mentioned range, appearance of subhar-

monic at a lower threshold and then its disappearance for in-

termediate excitation values, and then reappearance at a

higher excitation that is more in line with values (f/f0¼ 1.4, 2)

outside this frequency range. Figure 7 indicates both the lower

and the higher thresholds for the smallest two values of js.

4. Exponential elasticity model (EEM)

The EEM model of encapsulation (Paul et al., 2010)

assumes the interface to be viscoelastic having a dilata-

tional elasticity and a dilatational viscosity just like the

constant elasticity model (Sarkar et al., 2005), but incorpo-

rates the effects of strain softening by letting the interfacial

elasticity decrease exponentially with increasing surface

area. This model, unlike the constant elasticity model and

the de Jong model, has an upper limit on the effective inter-

facial tension which, we noted in KS1, facilitates genera-

tion of subharmonic signal near the resonance frequency.

In KS1 we showed the effects of variation of the initial ra-

dius (R0¼ 2–5 lm) on frequency-dependent subharmonic

threshold. We found for R0� 4 lm, subharmonic threshold

is minimum near twice the resonance frequency, whereas

for R0� 3 lm, subharmonic threshold is minimum near the

resonance frequency. Such results can be explained based

on the increase in system damping due to the decrease of

initial radius (R0). Here, in Fig. 9, we plot frequency-

dependent subharmonic threshold for R0¼ 3 lm varying js

in the range 1� 10�9 �3� 10�8 N s=m. Just like other

models, increased encapsulation damping shifts the mini-

mum threshold away from 2f0. For js > 1:2� 10�8 N s=m,

threshold near twice the resonance increases and thereby

the minimum threshold is obtained near the resonance

frequency. On the other hand, for js < 1:2� 10�8 N s=m,

the minimum threshold near twice the resonance frequency

gets sharpened.

IV. SUMMARY AND CONCLUSIONS

In a recent investigation (KS1), we found that contrary

to the classical result, the minimum excitation threshold for

subharmonic generation from contrast microbubbles, accord-

ing to a number of different models of encapsulation, does

not necessarily occur at twice the resonance frequency, but

shifts to lower frequencies. Subsequently, an experimental

investigation also found subharmonic threshold at resonance

frequency lower than at twice the resonance (Faez et al.,
2012). In KS1, we expressed all models in a common inter-

facial rheological form containing a radius-dependent

effective surface tension cðRÞand an effective dilatational

viscosity jsðRÞ. For most encapsulation models, the dilata-

tional surface viscosity is constant. The study concentrated

on the effects of the form of effective surface tension cðRÞ
on the subharmonic threshold. Here, we further investigate

this phenomenon seeking an explanation of the deviation

from the classical result in the damping of the encapsulation.

We note that the damping contribution due to encapsulation

is an order of magnitude larger than the other damping

terms—due to liquid viscosity and re-radiation.

A damped linear oscillator has a natural frequency lower

than that of an undamped oscillator. We first seek an explana-

tion of the shift of the minimum threshold to lower frequen-

cies in the decreased linear natural frequency due to damping.

However, we show that the frequency for maximum scattered

pressure (as opposed to maximum displacement) actually

increases with increasing damping. The simple shift of natural

frequency of the linearized system due to damping, therefore,

cannot explain the result in KS1. Instead, we examine the

complete nonlinear bubble dynamics according to a number

of different models—free bubble, Newtonian, Church–Hoff,

FIG. 9. Variation of the subharmonic threshold of a Sonazoid microbubble

R0¼ 3.0 lm with normalized excitation frequency as predicted by visco-

elastic exponential elasticity model (EEM) for different surface dilatational

viscosity ðjsÞ of encapsulation.

FIG. 8. Subharmonic response as a function of excitation pressure at a low

damping (js ¼ 6� 10�9N s=m) for the Marmottant model It shows an

uncharacteristically low subharmonic threshold at 35 kPa at f=f0 ¼ 1:7. For

increasing excitation, the subharmonic later disappears and then reappears at

a later value of 480 kPa. For the other two frequency ratios f=f0 ¼ 1:4 and

f=f0 ¼ 2:0, there is only one threshold at 240 and 780 kPa, respectively.
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Marmottant, and exponential elasticity—varying the radius as

well as the surface dilatational viscosity of the encapsulation.

These models were shown in KS1 to predict subharmonic

threshold values comparable to experimental observations.

The damping of the bubble dynamics increases sharply

with decreasing bubble radius. We show that the subhar-

monic threshold increases with increasing damping—the

threshold near twice the resonance frequency increases more

than the one near the resonance frequency. Therefore, even

for a free bubble, the minimum threshold shifts to the reso-

nance frequency from twice the resonance for smaller sub-

micron radii. For contrast microbubbles, the total damping is

dominated by that arising from the encapsulation, modeled

by the dilatational viscosity. One sees results similar to free

bubbles for Newtonian, Church–Hoff, and exponential

elasticity models—the minimum threshold at twice the reso-

nance shifts to resonance with increasing damping. The Mar-

mottant model shows a flatter response with a valley of

threshold minima in the range of frequencies from resonance

to twice its value; its value increases with increasing dilata-

tional viscosity. Due to the nondifferentiable character of the

surface tension at its lower limit (imposed to ensure non-

negative surface tension), it has some distinctive features at

low values of damping. It has an extremely low threshold of

subharmonic generation, as also noted before (Frinking

et al., 2010), and then the disappearance of subharmonic at

an intermediate pressure, and then the reappearance at a

higher pressure. Note that a non-negative surface tension

cannot explain the stability of contrast microbubbles—

bubbles with non-negative surface tension are only neutrally

stable against dissolution (Katiyar and Sarkar, 2010). After

all, the encapsulation stabilizes a contrast microbubble

(Katiyar et al., 2009; Sarkar et al., 2009). Further, a negative

surface stress, i.e., a net compressive stress is what causes

the encapsulation to buckle.

We conclude that encapsulated microbubbles due to their

small size and the encapsulation contain significant damping.

The deviation from the classical result of minimum threshold

at twice the resonance frequency occurs for them because the

classical results are obtained using perturbation analysis that

assumes small damping. Increased damping reduces response

at twice the resonance frequency more than at resonance fre-

quency shifting the minimum threshold excitation for subhar-

monic generation toward the resonance frequency. The

subharmonic signal is generated by energy transfer between

frequencies intrinsic to a nonlinear system. The classical per-

turbative result arises from the ease of amplification of the

natural frequency component, while being excited at twice

the resonance frequency. The higher damping at twice the

resonance compared to at resonance competes with this effect

resulting ultimately in the shift of the minimum. Note that

the numerical study presented here is not limited to any par-

ticular model of the encapsulation. It does not account for

nonspherical oscillation—recently high speed optical obser-

vation has shown parametrically driven shape oscillation in

contrast microbubbles at subharmonic frequencies (Dollet

et al., 2008). However, we contend that although the bubble

wall indeed undergoes strong shape oscillations, they give

rise to a dipole pressure field in contrast to the monopole due

to the radial pulsation, and therefore have very little effect on

the scattered far field response recorded by a transducer situ-

ated away from the bubble. Also note that although the over-

all subharmonic threshold for a specific contrast agent is

determined by the entire bubble size distribution, the underly-

ing physics can only be understood by single bubble behavior

focused here. After all, the classical theoretical result is based

on single bubble dynamics. Finally, the recent experimental

observation (Faez et al., 2012) of lower subharmonic genera-

tion threshold at resonance than at twice the resonance

clearly demonstrates the phenomenon explained here.
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