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Negative Normal Stress Elasticity of Emulsions of Viscous Drops at Finite Inertia
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The relation between the normal stress and the imposed strain for a Newtonian emulsion in an
oscillating extensional flow is computed at finite Reynolds numbers using numerically simulated drop
geometry. The interfacial stress was determined using Batchelor’s formalism. In the presence of inertia,
the phase between the stress and the strain deviates from Stokes’s flow, and leads to a negative elastic
modulus at small frequencies. The results are explained by a mass-spring-dashpot model.
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FIG. 1. Emulsion of drops in an oscillating extensional flow
generated by a four-roll mill.
An emulsion containing small droplets of one liquid
suspended in another, even if both are viscous, displays
an effective macroscale viscoelastic response. The elastic-
ity emanates from the interfacial tension acting at the
boundary between the deforming drops and the continuous
phase [1]. For a spherical drop the interfacial tension
contributes to zero net stress. But a drop deformed in an
imposed flow gives rise to excess stress. The phase lag
between the imposed flow and the drop response deter-
mines the division of this excess stress into viscous and
elastic components. Starting with Taylor [2], many ana-
lytical models have been developed to describe the drop
deformation in simple shear or extension [3]. Batchelor [4]
developed a theory for the stress system of suspensions or
emulsions providing an expression for the effective stress
as a function of positions and shapes of the drops.

Because of the small size R of the suspended drops, and
the slow velocity U encountered in emulsion flows, the
Reynolds number �UR=� (� is the viscosity, � density) is
often small. Consequently, experimental investigations of
drop deformation and emulsion rheology have been re-
stricted to creeping flows; the inertialess Stokes limit is
invoked in the analysis. However, there are numerous high
speed industrial flows, where the drop Reynolds number
can be O�1� or higher or unsteady effects become promi-
nent. The presence of inertia alters the phase lag between
the imposed flow and the drop response [5], leading, as we
will see, to negative values for normal stress storage modu-
lus for a range of frequency.

Negative modulus does not violate any physical law.
Recently, ‘‘metamaterials’’ with negative refraction for
electromagnetic wave propagation have attracted a lot of
attention [6]. These materials are manufactured by machin-
ing designed microstructures such as an array of wire
elements into a substrate material. The dimensions of the
embedded elements are much smaller than the wavelength
and play an identical role to that of droplets in an emulsion,
both leading to negative effective properties. The mecha-
nism behind the negative refraction emerges from the
frequency response of individual wire elements, just as
the anomalous elasticity for emulsion does from the fre-
quency response of droplets. The analogy is further de-
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lineated by the model for the drop contribution to the stress
below. It should be mentioned that, in steady shear, nega-
tive first normal stress has been predicted for liquid crys-
talline polymers due to director tumbling motion [7] and
also was recently measured in attractive emulsion [8] and
nanotube suspension [9]. Inertia has recently been demon-
strated to result in the same effect for viscous emulsion
[10].

We numerically investigated the rheology of a dilute
emulsion of viscous drops in an oscillating extensional
flow of a four-roll mill [2,11]:
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where _"0 is the amplitude of the strain rate, and ! the
frequency of oscillation (Fig. 1). Such flows are important
in processing and mixing of polymer blends and because of
absence of rotation in the velocity gradient, they provide a
direct means of assessing the effects of stretching on the
emulsion. The flow is governed by the Navier-Stokes
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equation in both the drop and the continuous phase; the
velocity and the tangential stresses are continuous at the
interface and the normal stress experiences a jump due to
the interfacial tension [12]. For a dilute emulsion the drops
are too far apart to interact with each other, and each is
subjected to the imposed oscillating extensional flow. We
simulate a single drop in such a flow using a front tracing
finite difference technique. The governing nondimensional
parameters, Reynolds number Re � � _"0R

2=�, inverse
capillary number k � Ca�1 � �=�� _"0R� (� is the inter-
facial tension), and Strouhal number (nondimensional fre-
quency) St � != _"0 are varied fixing the density and the
viscosity ratios to unity.

The simulation results on the drop dynamics have been
reported before [5]. As shown there, the drop undergoes
squeezing and stretching in orthogonal directions with the
imposed flow, maintains an approximately ellipsoidal
shape and reaches a steady-oscillating state with the
same frequency as the imposed flow following a short
transient. In Fig. 2, the top view (z direction) of the drop
shape in the steady-oscillating state is shown together with
the flow field in a plane through the center of the drop. The
second and the fourth frames show significant drop defor-
mation even though they correspond to zero strain rate,
indicating that the drop responds to the flow with a phase
difference. At finite inertia, the phase difference becomes
anomalous in that the drop leads the flow field giving rise to
a negative phase lag compared to the flow strain rate.
Indeed, in Fig. 2 (case of Re � 1:0, k � 200, St � 5�)
the drop deformation in the second frame is leading the
flow stretching in the third frame. Such a phenomenon
indicates that the drop-induced excess interfacial stress
would also show an anomalous behavior, which is eluci-
dated in this Letter.

The volume-averaged stress for a dilute emulsion of
identical drops is given by Batchelor as [4,13]
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where V is the averaging volume with m droplets within,
Ad and Vd are the area and the volume of a single drop, and
� � mVd=V is the droplet volume fraction. Pave is the
isotropic part of the average stress, I is the identity tensor,
and �ave is the deviatoric part excluding the contribution
from the drop interface. �excess is the interfacial contribu-
FIG. 2. Drop shape in one period in steady state; k � 200,
St � 5�, Re � 1:0.
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tion; qd, the interface tensor, is determined by the drop
shape, n the outward unit normal vector at the drop inter-
face. In a dilute emulsion the contributions of each drop to
the bulk stress are independent, giving a linear variation
with �. The single drop excess stress �dexcess nondi-
mensionalized by � _"0 is expressed as �d

excess �
��qd=�� _"0� � �kRqd. The interface tensor is computed
integrating over the simulated drop surface. The oscillating
extensional flow gives rise to equal positive and negative
flow strains along the extensional axes: " �

R
_"dt �

_"0=! sin!t � �1=St� sin�t0St�, where t0 � t _"0 is the non-
dimensional time, and "0 � _"0=! � 1=St is the strain
amplitude. Note that the strain by definition lags the strain
rate by �=2.

The normal stress difference �d
22 � �d

11 is plotted in
Fig. 3 for different nondimensional frequencies (Strouhal
numbers) at Reynolds number 0.1 and 1.0. For the lower
Reynolds number case, the stress is viscous, i.e., in phase
with the strain rate, and leads the imposed strain, by�=2 at
low frequency (St � �). With increasing frequency, the
stress becomes progressively elastic. It becomes in phase
ωt
0 1 2 3 4 5 6-1

FIG. 3. Flow strain "St and interfacial stress difference �d
22 �

�d
11 vs t0 St for different frequency St in steady oscillation.

(a) Re � 0:1, k � 45 (�d
22 ��d

11 scaled by 1=10).
(b) Re � 1:0, k � 200 (�d

22 ��d
11 scaled by 1=60).
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with the imposed strain, at St � 20�, indicating a pure
elastic response for the interfacial stress. At higher inertia
(Re � 1:0), we obtain similar behavior at high frequency
St � 20�. But at low and intermediate frequencies, the
phase difference � (between the normal stress �d

22 ��d
11

and the imposed flow strain) reaches a value higher than
�=2 as the frequency is increased before becoming zero at
high frequency (Fig. 4).

Expressing �d
22 � �d

11 � ��
d
22 ��d

11�
0 sin�t0St� ��,

the nondimensional elastic (storage) and viscous (loss)
moduli are

Ed 0int � ��
d
22 � �d

11�
0St cos�;

Ed 00int � ��
d
22 � �d

11�
0St sin�:

(2)

The superscript zero represents the amplitude. In Fig. 5, we
plot Ed 0int and Ed 00int for the same conditions as in Fig. 3. For
the low Reynolds number case [Fig. 5(a)], we obtain the
classic curves with viscosity dominating elasticity at low
frequency and a crossover at intermediate frequencies [14].
The result matches with the analytical models of Oldroyd
[15] and Yu and Bousmina [16] (both give identical results
in this limit) applicable for Stokes flow. At increased
inertia (Re � 1:0), we find that for intermediate frequen-
cies the behaviors of the moduli [Fig. 5(b)] are very differ-
ent from their low Reynolds number counterparts. At very
low frequency, the stress is more viscous than elastic.
However, with increased frequency, the storage modulus
becomes negative. It reaches a minimum value before
increasing to become positive. The negative value arises
due to � > �=2 in Fig. 4 for the same range of frequency.
Both moduli show a maximum that corresponds to a reso-
nance in the drop responses [5]. Note that Re � 1:0, k �
Ca�1 � 100–1000, and St � 2–10 are achievable at a shear
St=ω/ε.
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St. The prediction of the one-dimensional model from Eq. (3) is
shown in the same plot.
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rate of 100 s�1 with a 100 �m drop of water or alcohol
(surface tension 1–10 dyne cm�1).

The phenomenon can be explained by considering the
drop as a damped mass-spring system with mass �̂R̂3,
damping �̂ R̂ (viscosity), and spring �̂ (interfacial tension).
R̂ is the drop radius. The hat is used to differentiate the
model variables from their real counterparts. Under im-
posed flow forcing G0g�t� (proportional to the flow strain
rate, G0 is the magnitude), a measure � of the deformation
of the drop (assuming an ellipsoidal drop, the difference
between its major and minor axes [5]) is governed by an
ordinary differential equation (ODE):

�̂R̂3 �� � �̂ R̂ _���̂� � �̂ R̂G0g�t� � �̂R̂
3G0 _g�t�;

_��0� � G0g�0�; ��0� � 0:
(3)

The terms on the right-hand side of Eq. (3) mimic the
effects of the forcing flow. The first forcing term corre-
sponds to the viscous stress, and the second term represents
the dynamic pressure (�@u=@t�rp). The pressure term
St=ω/ε.
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FIG. 5. Nondimensional extensional moduli vs St at
(a) k � 45, Re � 0:1 and (b) k � 200, Re � 1:0. The predic-
tions of the phenomenological tensor model by Oldroyd and Yu
and Bousmina as well as the ODE model are also shown for
comparison.
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is critical for matching the dynamics of the actual problem.
The model can be nondimensionalized using the length
scale R̂ and time scale R̂=G0:

R̂e ��� �� � k̂� � g�t� � R̂e _g�t�; _��0� � g�0�;

��0� � 0:
(4)

where R̂e � �̂ R̂G0=�̂, k̂ � �̂=��̂G0�, Ŝt � R̂!=G0. For
an oscillating flow g�t� � exp�i!t�, the solution is

� �
1� iR̂e Ŝt

k̂� R̂e Ŝt2 � iŜt
exp�it0Ŝt�;

j�j �

����������������������������������������
1� R̂e2Ŝt2

�k̂� R̂e Ŝt2�2 � Ŝt2

vuut ;

�̂ � tan�1 Ŝt

k̂
�1� k̂ R̂e� Ŝt2 R̂e2�;

(5)

where �̂ is the phase lag of the drop response behind the
imposed strain rate. The difference of interface tensor
principle axes q11�22 � q11 � q22 � � [see Eq. (1)].
Therefore �d

22 ��d
11 � �k�q22 � q11� � k̂� . The ana-

logue for the stress-strain phase angle is �̂ � �
2 � �̂ �

�
2 �

tan�1 Ŝt
k̂
�1� k̂ R̂e� Ŝt2 R̂e2�. The loss and the storage

moduli therefore are

Ê d 0
excess � k̂j�jŜt cos�̂; Êd 00

excess � k̂j�jŜt sin�̂: (6)

Note that this model is only qualitative and may not
quantitatively compare with the simulation. However, it
contains the essential physics, and therefore describes the
observed trends in phase, the negative and positive values
of storage modulus as shown in both Figs. 4 and 5. From
Eq. (3), the effects of inertia (Re) are clear. Furthermore,
the second term on the right-hand side of Eq. (3) [also the
third term in the expression Eq. (5) for �̂] representing the
effect of dynamic pressure is critical in switching from
negative to positive value of the storage modulus at higher
frequency. In Eq. (5), �̂ becomes negative due to the term
�k̂ R̂e making �̂ � �=2� �̂ more than �=2. With a fur-
ther increase in frequency, the term Ŝt2 R̂e2 becomes domi-
nant, switching the sign of the elastic modulus back. The
position and the shape of the peaks due to resonance are
also captured well by the model [Fig. 5(b)]. The model
peaks are much sharper. The similarity with negative re-
fraction in optical materials mentioned before is demon-
strated by the Drude-Lorentz model [6] that contains an
element response such as Eq. (5). Both the mechanical and
the optical phenomena are dependent on the frequency.
Recently, in steady shear negative normal stresses were
measured for attractive emulsion [8] and suspension of
non-Brownian multiwalled carbon nanotubes [9]. In both
cases interaction between elements (drops or nanotubes)
play a critical role and form cylindrical aggregates aligned
along the vorticity direction. In contrast, we consider a
dilute emulsion with negligible interactions where the
25600
negative elastic modulus results from inertial effects of
the drop response to the imposed strain rate. In a concen-
trated emulsion, interactions would lead to additional nor-
mal stress due to structure formation. The numerical
method used here can simulate such interaction albeit at
a substantially more computational cost. Note that emul-
sion containing viscoelastic drops would have additional
physics in droplet response [17]. Instability in high-aspect
ratio elastic filament has been theoretically analyzed to
predict a negative first normal stress difference for a
sheared dilute suspension of such filaments [18].
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