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Drop dynamics in an oscillating extensional flow
at finite Reynolds numbers
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A viscous drop deforming in a planar oscillating extensional flow is numerically simulated using a
front-tracking finite-difference method. The effects of periodic forcing and interfacial tension are
studied at low but finite inertia. The oscillation leads to decreased deformation and bounded drop
shapes for conditions for which steady extension results in drop breakup. The drop displays a
resonance phenomenon where the deformation reaches a maximum when the forcing frequency
matches the natural frequency of the drop. The large deformation at resonance indicates a possible
mechanism for size selective breakup by flows with appropriate fluctuation frequency. The detail
structure of the flow at different time instants within a period for various values of interfacial tension
and frequency is investigated. The drop dynamics shows a complex phase relation with the forcing
flow. Competition between the inertia-induced dynamic pressure and the viscous stresses leads to
both positive and negative values of the phase and a complex variation with interfacial tension and
forcing frequency. A second-order ordinary differential equation model with appropriate
representation of the pressure and viscous forces is developed that qualitatively explains the phase
behaviors. For the highest inertia case considered in this pd&er10.0, the drop dynamics
becomes aperiodic at resonance marked by a strong subharmonic component in the frequency
spectrum. €2005 American Institute of PhysidDOI: 10.1063/1.1844471

I. INTRODUCTION complex dependence on viscosity and density rafiost
large density ratio, increased drop viscosity leads to higher
Emulsions of immiscible drops with complex rheologi- damping, thus decreased deformation. Renatdsl >>** nu-
cal behavior appear in a number of industrial applicationsmerically simulated breakup of an isolated drop in a shear
The shape, orientation, and size distribution of interactingjow at finite Reynolds number, and found that the critical
drops along with their material properties govern the nonReynolds number for breakup scales with inverse capillary
Newtonian stresses in these floWsRecognizing the critical nymber. Along with inertia, oscillation and fluctuation re-

role played by the dynamics of a single drop, researcherg,ain the other important yet much less investigated aspects
have extensively studied it since the pioneering work of Tayy, the geformation research. Turbulent flow of emulation of-

lor ona drop deforming in linear flqus. For t.he most part, - ¢ors 4 case with such oscillations due to eddies of all possible
previous resgarch has been restpctedr%rngless steady length scales and frequencies interacting with drops. On the
Stokes flowusing various asymptotic methodsand bound- other hand, over the years oscillatory shear has become a

ary element simulatiot The latter allows simulation of ar- . . .

: . . . . _standard rheometer for testing the rheological properties of
bitrary deformation as well as strongly interacting drops in aemulsion525'26 Recently. the deformation and breakup of
concentrated emulsioll®> On the experimental side, q ol " ty’ Hear have b : pt I
Gracé® reported several criteria for breakup with varying | ropstllntsag\vlgs O.Stﬁ aorl); s e?rh 3\/; befr? dgxp(:rlmen atly
viscosity ratios in pure shear and extensional flows. The efnvestigate with results matched by both direct numeri-

. Y . . .
fects of flow type were systematically investigated by Bent-c&! simulatioi” and linear wscoela%lc theoff). , _
ley and Leal* using a computer-controlled four-roll mill. Recently, Sarkar and Schowalftehave numerically in-

Experiments were performed on drop behaviors in She‘,ﬂyestig.ated the deformation of a two—dimgnsional drop in the
reversal® and drop relaxation after step shé@with a view flow field of a vortex and related extensional flows with ro-
to predicting rheology of emulsion, recently a number oftating axes of extension. They observed unusual phenomena
new analytical ellipsoidal droplet modéfs*® have been de- due to resonance such as increased drop deformation for in-
veloped with various degrees of success in matching experfreasing surface tension in such time-periodic straining
mental observations. Although many applications involveflows. The drop acts as a damped mass-spring system, where
significantly high Reynolds numbers, much less attention hagurface tension and viscosity play the roles of the spring and
been paid to the effects of inertia on drop deformation andlamping elements, and the finite inertia, that of the mass. As
breakup. Leal and co-workéfs??>conducted a series of stud- the interfacial tension is varied the natural frequency of the
ies of inertial effects on drop deformation in uniaxial exten-sSystem changes, and when it matches the forcing frequency,
sional flows. Inertia increases deformation. It gives rise to dhe deformation attains a maximum. Subsequent small am-
dynamic pressure that dominates the viscous stress to prpfitude perturbative analysf using unsteady Stokes solu-
duce a barrel-like drop shape. The deformation displays &on of the system further elucidated the resonant drop dy-
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namics. Resonance may provide an alternative mechanism
for efficient energy transfer from flow to the drop, and result

in its breakup at low strain amplitude but appropriate \\ @)

frequency’?1 In an experimental investigation of a turbulent
flow of bubbly liquid, Risso and Fabte observed bubble
breakup controlled by a similar resonance-like mechanism. It JB
should further be stressed that even for Stokes flow without
inertia, the history of the unsteady flow is critical for the
determination of the dynamic behavior of drops. For ex-
ample, at subcritical flow conditions where the drop does not

breakup according to steady analysis, an abrupt change in / \

strain rate or flow type may induce breaktip?

Here, we investigate the deformation of a three-
dimensional drop in an oscillating extensional flow at finite
inertia. The flow can be realized using a four-roll it We
adopt a three-dimensional version of the front-tracking
code that we used for our previous
investigation§.9'37ln the following, the mathematical formu-
lation and its numerical implementation are briefly de-
scribed. We developed a second-order ordinary differential
equation(ODE) model that adequately captures the underly-
ing physics and explains the numerical observations. A sys-
tematic investigation is conducted by varying Reynolds num-
ber, interfacial tension, and flow frequency. The resulting
drop dynamics and the modified flow field are described in )

finite-differenc@3°

detail, and their relations discussed.

Il. OSCILLATING EXTENSIONAL FLOW

We assume a planar oscillating extensional flow:

u 0 1 0\/x
v |=gycodwt)l1 O O|ly
w 0 0 0/\z
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FIG. 1. (a) Schematic of the domain of calculatiotb) Discretized drop
interface by triangular elements.

and 8(X—Xg) is the three-dimensional Dirac delta function.
The interfacial tension, which produces a jump in the normal
stress across the interface, is represented as a singular body
force?>3>0 anticipating its numerical implementation. The

Here, g is the maximum strain rate. The principle axis of variation of interfacial tensiof due to a nonuniform distri-

extension oscillates with the angular frequengyNote that

bution of surfactant is not considered. The fluid is incom-

the flow is free of vorticity. However, presence of the droppressible in both phases:

results in vorticity generation, as will be seen below. Also
note that the drop induces a nonzevoelocity component,

although the forcing flow is purely planar.

IIl. MATHEMATICAL FORMULATION

With a drop of Newtonian liquid suspended in another
Newtonian liquid, the flow is governed by th@avier-

Stokes equation?®356

%w (pld) == Vp+ V [V i+ (uV Q)]

—f dXgrNl 8(X = Xg), (2
B

wherep is the pressurep the local density of the fluid, and
u the local viscosity. The superscrigtrepresents transpose.
The velocityd is continuous in the entire domain, which

VvV -G=0. (3

The interface follows the fluid. The kinematic condition for
the interface is

-

dxg

ot U(Xg). (4)

The velocity on the interfaci; is related to the field velocity

(%) = f 4R6(R — $)0(R). )
Q

IV. NUMERICAL IMPLEMENTATION

The above formulation leaves us with a system of partial

differential equations with spatially varying coefficients.

consists of the continuous phaQg and the suspended drop Conventionally, the Navier-Stokes equation needs to be

Q4 as shown in Fig. @a). B is the drop-fluid interface con-
sisting of pointsxg, I' is the constant interfacial tensior,

solved for each phase, matching boundary conditions at the

interface. Front-tracking methdtf™® treats the entire flow

the local curvaturefi the outward normal to the interface, system as a single phase with a sharp variation of properties
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in a finite-thickness region across the interface. A smooth — ,M1g* *  *— (p)" 20 .
representation of thé functions in(2) and(5) is used for the At ==V - (plit)" + F"+ Dy (")
numerical implementation:

+ D, (0") + D (0" (11
yz z )
D(X—Xg) = DY(x - XB)Dl(y - yB)Dl(Z_ Z),
G* * ok 'j* * k k
L P v =D AU* * %), (12)
a
D(x - x =—(1+cos—x—x ) 6
(x=%g) = 7 A X% (®) o
u* * u* * % .
P =Dyy(* %), (19)
X = Xg| < 2AX. At
Ax is grid spacing for the discretization. The Navier-Stokes pn+ll]* —uxx =D (*) (14)
equation is solved in a discretized domain containing both At XX '

the drop(ly and the continuous phask. The drop interface Each implicit equation(12)—(14) gives rise to a tridiagonal

(fronf is represented by a §epqrate mesh composed of magilstem that is directly solved without iteration. The conver-
gular elements as shown in Fig(bl. To prevent the ele-

ments from being excessively distorted, an adaptive regridg-gmeen dﬁ;g\fg@;ggg?ﬁ tﬁeegssgzg&g)y (F;{;S czrgngg for the inter-
ding scheme is implemented for the front. The motion of the '

element vertices determines the shape of the evolving inter- G* = G* * = (* * * = (* * * * = ("1 (15

face. .

The velocity and pressure are described on a staggere-laqe ADI scheme reduces the time sFep by one orderzof mag-
grid. The Navier-Stokes equation is solved by operator spIit—mIUde' We also adhe-re to other critera<2.0u/ (pUpya)
ting projection finite-difference method. The method solvesand At<AX/Umay at high Reynolds. numbers to ensure the
the equations in two steps. The first step is to find an inter9verall convergence of our simulations.

mediate velocityd* by

p”+1l]* - (p0)" R N ; V. NONDIMENSIONAL PARAMETERS
———————=-V - (pid)"+F"+ V - 7, (7)
At The mathematical problem can be nondimensionalized
) . - using the undeformed drop radiésand the inverse exten-
where 7' is the viscous stress.F" is the body force, here  gjona] ratez;! as the length and the time scales, respectively.
arising solely from interfacial tension. The spatial derivatives|, tnis paper, in the interest of brevity, we have restricted
are approximated by central differences in their conservativgselves to density and viscosity ratios to the value of unity.
form. The final velocity at next time staf** is obtained by  Note that the present numerical scheme can handle different
density and viscosity inside the drop. Three nondimensional
(8) parameters define the problem. They are Reynolds number
Re=peR?/ u, inverse capillary numbet=Ca'=I"/(gquR),
and nondimensional frequencyStrouhal number St
=wlep. Typical values for a drop of alcohol insoluble in
water are ©=0.018 gcm's™?, p=0.82gcm? and I'
=1-10dynes cni! (Davies and Rided! p. 17). For such a
1 1 drop of radius, R=1cm, suspended in wateru
V'< n+1Vp“+l)=—V A (9) =0.01gcm's™?, p=1.0 gcm?, and £,=0.1 s%), one ob-
p At tains Re=10 and=1000—10000.

We use a multigrid method for solving the pressure Poisson’s
equation.

As indicated in previous stucf}?,a fully explicit scheme
for calculating the stres¥ -7 suffers from restrictions on Although the flow is governed by the Navier-Stokes
) 5 )
time stepsAt<0.125Ax)°p/ u, especially at low Reynolds o4 ation, the underlying physics of drop deformation can be
numbers. To overcome this restriction, we treat some of thgjoqcriped by a simple ODE model as has been demonstrated
diffusive terms implicitly in alternate spatial directions by Sarkar and Schowalt®+37 A drop subjected to a linear
(ADI). The viscous term in Ed7) can be expressed as extensional flow can be modeled as a damped mass-spring

V - 7= Dyy+ Dy, + Dyt Dyt Dy + Dy, (10) system with maséRf, dampingz (viscosity, and springl’
(interfacial tensioh R is the drop radius. The hat is used to
whereD,,, Dy, D,, are the mixed derivatives, and are com- differentiate the model variables from their real counterparts.
puted by an explicit schemé,, D,,, D,y are the double Forced by the imposed flok,g(t) (G, is the magnitude
derivatives to be treated implicitly. With ADI, the E¢¢) is  deformation of the drop is modeled by a second-order ODE
further split into four steps: representing a harmonic oscillator:

-n+1 %
ut-u 1
— n+1
- p

At - pn+l ’
where the pressung™? is calculated by requiring™? to be
divergence-fre¢Eq. (3)]. Thus a Poisson’s equation for pres-
sure needs to be solved,

VI. A SIMPLE SECOND-ORDER ODE MODEL
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FIG. 2. The drop in the computational domain with an oscillating exten-
sional flow imposed at the boundary.

PREX + ARX + I'X = ARGy (1) + pR3G(). (16)
The initial condition is
X(0) = Gog(0), X(0)=0. (17)

The forcing terms in the right-hand side of E@6) are cho-
sen to mimic the effects of the forcing flow. The first forcing

Phys. Fluids 17, 027103 (2005)

L/R, B/R, W/R

(b)

FIG. 3. (a) Drop axes evolving with nondimensional time in an oscillatory
extensional flow Length- (solid), breadthB (dash-double-dottedwidth-W
(dashegl (b) Drop shape at equal interval during one flow period; Re=0.1,
St=4a, k=10.

Btar (1 -kRe + 22 ReD). (22)
k

term corresponds to the viscous stress and the second tel@ne can retrieve the Stokes IimitX|:E‘l and Z%
represents the dynamic pressure. From the momentum equatarr(St/k). Expression(21) indicates that resonance oc-

tion (2), pdu/dt~Vp, one can see that a time-dependent

velocity Gyg(t) gives rise to such a pressure. As we will see,

the pressure gradient plays a crucial role in the drop dynanP
ics, and the inclusion of the second term in the forcing is

critical for accurate description of the underlying physics. An
oscillating flow is specified bg(t) =expiwt).

The model is nondimensionalized using the length scale

R and time scalef?/GO:

Re X+ X + kX =g(t) + Re g(t), (18)

X(0)=g(0), X(0)=0, g(t)=exqit S, (19)

where the nondimensional numbers afezlaéGo/[L, k
=T'/(nGyp), St=wR/Gy, andt’=tGy/R. The solution of this
ODE is

1+i Re St A
X= ——— expit SY), (20)
k- Re St+i St
with a magnitude

1+ X2 Re?
X=\——= —, (21)
[k - St? Re]? + St?

and a phase lag behind the forcing X=|X|expi(t’ St-4)1:

curs atk=Sf Re for fixed Stand Re and the resonance
phase,.s=tar }(St’k) from Eq. (22) is the same as in the
Stokes limit. Also, we note the significance of the dynamic
pressure ternithe last term in Eq(18)]. In absence of this
term the phase lag would become

B=tant ———. (23
k- Re §2

Equations(22) and (23) obtain different behaviors and dif-

ferent limits ask— o or St— . The model variable rep-
resents the deformation or stretching of the drop as will be
appropriately defined later. Note that this model is only
qualitative, and may not quantitatively compare with the
simulation. However, we claim that it contains the essential
physics, and therefore will accurately describe the observed
trends and various scalings, as will be seen below.

VIl. RESULTS

We simulated an isolated drop in a box-shaped domain
as shown in Fig. 2. The domain is discretized by an 81
X 81x 81 grid. An oscillating extensional flopEqg. (1)] is
imposed at the domain boundary. The radius of the unde-
formed drop is 0.1 of the domain size. We ensured that simu-
lations are independent of the size of the domain. We also
investigated grid convergence by increasing the discretiza-
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FIG. 4. D vst’ for different initial conditions; Re=0.1, St=#4 k=10. t

FIG. 6. D vst’ for differentk; St=4s, Re=0.1. Inset showB,,, Vs k.

tion to 129x 129X 129 without finding significant change in

the result. See Sarkar and Schowdltdor detail conver-

gence study and comparison with Stokes flow for a two-each axis reaches a steady oscillating state. It is noted that

dimensional version of the algorithm. WI/R departs from 1.0, which indicates that a small deforma-
Experimental study of the three-dimensional drop shapdion exists in the third dimension. In Fig(3, top view (z

under shear flol showed that the drop maintains an ellip- direction of the drop in the oscillating flow is shown to-

soidal shape up to moderate deformations. In Fig),3ve  gether with the flow field in the plane through the center of

plot the three drop axes with nondimensional tihets,.  the drop. The drop alternately experiences stretching in or-

The maximumL and minimumB axes are the maximum and thogonal directions. Within one period of the flow, the defor-

minimum distances of the drop surface from its center withinmation reaches maximum twice. The maximum deformation

the plane of the imposed flow. The widiiis in thez direc-  does not coincide with the maximum strain rételocity) of

tion perpendicular to the plane of the flow. The drop deformghe flow (first, third, and fifth frames indicating a phase

from a spherical shape=B=W=R. After a transient period difference between the deformation and the strain rate.

1.
5 : .
14F o .
13E b ——=—— simulation [ 1.4k
N M-M model 1.75F Tl
- - flow strain rate 1F
1.2 F - - k=5 Dcr - - 10 ol
11 zf;g 5 15 ——— k=100 e
= = 30l - 6k
1 ;_ k=50 £10 - o
o9f 125 02}
n : q
08fF / \ ;|
o F / Ca’ o 1k
- -2 cr m K
07E // 1010\1 10\ 10 a i
06F / k=Ca i
s ’ 0.75 !
05F , N
s / 5
4F K
o [ P
0.3F ; —t— [
E /o i
o2f ozsk
01T T T T - E
0 - | | L 1 1 TR R | - .
0 2 4 6 8 910 115 120 125
v t'st

FIG. 5. D vs t’ for differentk in steady extensional flow. St=0, Re=0.1. FIG. 7. D/D,,, vs t’ St for differentk. Inset shows the phase I@yvs k.
Inset showsDgeqqy Vs k along with Maffettone-MinaléMM) model. St=4m, Re=0.1.
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FIG. 8. (a) Dpay Vs k and ODE predictiongX| vs k: (b)
DnaxVs St and ODE predictionX| vs St

For a nearly spherical drop, a criterion for deformationA. Drop deformation: Steady extension and effects of

was suggested by Tayld? viz., D=(L-B)/(L+B). In Fig.

4, we plotD as a function of nondimensional tinteé After

an initial transientD reaches a steady oscillating state where
the maximum and the minimum reach their long-time value
Dinax @and D i, respectively. The nonzei®,,;, (nonspherical
shape was also observed for drops in oscillatory sHéar
The presence of viscosity gives rise to a finite relaxation time
preventing recovery of the spherical shape. As shown in Flgt
3(b), within one period of the flow, the drop experiences the
same stretching in two orthogonal directions. As a result, thd
oscillating frequency oD is twice the flow frequency. In
Fig. 4, we compare the evolution Bf under different initial
strain rates. The spherical drop is introduced in the flow a
the instant of minimum(zerg and maximum strain rates,
respectively. For initial zero strain ratsolid line), D first
shoots to a higher maximum value. As the flow reverges,

oscillation

We first investigate the drop deformation in a steady

extensional flow in Fig. 5 as a benchmark. We consider a
Srelatlvely low Reynolds number of Re=0.1. The evolution of
D is plotted for different interfacial tension paramekerAt

low values ofk(k=5.0), the drop experiences continuous
stretchlng without reaching an equilibrium indicating even-
al breakup. Ask is increased to 10.0, the extensional
rowth is restrained by increased interfacial tensi@n.
reaches a steady value after a transient evolution. We found
that abovek=10.0 a steady deformatidDgc,qy€Xists in the
{ong-time limit, while belowk=10.0 the drop breaks up after
transients. Such a criticl,, (or a critical capillary number

Ca,=k3}) has been experimentally observed and predicted
by various analytical models. In the inset, the variation of

then decreases to a minimum. Thereafter lower maxima appstead with k is pIot-ted. .The Maffettong—Minale(Ml\A) _
(dash-dotted lineslightly underpredicts the numeri-

Dmin FOr an initial strain rate at its maximugaashed and ¢cal simulation. The predicted critical deformatioD,,

pear; maxima and minima asymptotically appro&gk,, and

dotted line$, D does not overshoot in the first period. Al-

modet’

~0.35 and the corresponding critical capillary numbeg,Ca

though the drop experiences different startup transients for=0.1 agree with the expenmental results in the Stokes flow
different initial conditions, eventually identical long-time limit.*

evolutions are achieved. In the same plot, the histoiy &r
a drop initially at the flow centefdashed ling and another
initially away from the flow centefdotted ling are com-

4 The observedk™ scaling agrees with the prediction

of small-deformation theoryD ~ Ca).
We turn to drop deformation in an oscillating extensional
flow. In Fig. 6 the evolution oD for differentk is plotted to

pared. Indistinguishable evolution Bfis observed for these demonstrate the effects of interfacial tension. In contrast to
two cases. The drop is subjected to the same strainsrate steady extensiofFig. 5), a bounded shape is achieved even
=gy codwt) independent of its position in the linear flow at k=5.0, and fork=10.0 a lower deformation is observed.
[see Eq(1)] leading to identical deformation. In the follow- Oscillating extensional flow prevents drop breakup even at
ing, we look at the influences of interfacial tension, flow very small interfacial tensions because the flow reverses be-
frequency, and Reynolds number on the drop dynamics. fore the drop could break. In the inset, the variatiorDgf,,
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FIG. 9. Dpax Vs k for different St; Re=1.0. Inset shows the scalingkgf

~SE.

with k is plotted. For values ok<<10, D,,,, shows a slight
increase with increasink; as in the two-dimensional cdSe
it represents a resonance phenomenon characteristic of a fi-
nite inertia system. The system behaves like a harmonic o
cillator, having a natural frequency varying with the interfa-
cial tensionk. If the natural frequency and forcing frequency

10'

k
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plitude in the small-deformation range was also reported in
the previous oscillatory-shear stu"(ﬂBelow we will use the
ODE model of Sec. VI to qualitatively explain the drop re-
sponse including various asymptotes withacting as a sur-
rogate forDpax

For the same flow, differeri leads to different phases
for D as is seen in Fig. 6. In Fig. 7, we plot the scaled
deformationD /D,y Vs the scaled time&' St after the initial
transient. For comparison, the absolute strain fate|
=|coqwt)| (solid line) is also shown in the same figure. The
deformation lags behind the strain rate. In the inset of Fig. 7,
the phase lag of the deformation behind the flow strain rate
is plotted as a function ofk. It shows that the deformation
lags by a value between 0 amd 2. At low interfacial tension
(k—0), B approachesr/2. With increasing, B decreases.
Both are predicted by the ODE mod@2) for low Re, as is
the case here.

We conclude that the introduction of oscillation in an
imposed extensional flow leads to an oscillating drop shape,
which tends to settle down in the long-time limit to a peri-
odic behavior with a phase lag behind imposed strain rate. As
in the two-dimensional ca$&® finite inertia results in a
resonance of the system. In the following, we explore these
phenomena in detail, and explain the observation with the
DE model.

. Deformation: Resonance and phase dynamics

We increase the Reynolds number to 1.0. In Fi),8

match, the drop experiences an enhanced deformation. In thiee variation of deformatiod,,, with interfacial tensiork is

inset of Fig. 6,D. iS Seen to scale ag?* for k—w. A

shown for both Re=0.1 and Re=1.0 at St=4As k in-

similar linear relation betweeb ., and the strain rate am- creasesP,, first increases to a peak, and then decreases.
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For Stokes flon(Re=0), we observe no resonance witkj

k=100

05 e k=600 decreasing monotonically with increasiﬁg)r &. As Re is
— — — - k=1000 increased to 0.1dash-dotted lingsand 1.0(dashed lines
|X| shows resonance behavior with increasfcrtg &, similar

0.4 to the simulation results. The resonance peak increases with

increased B. The model also predicts? and S scaling
for |X| similar to D, Note that in the absence of the last

a3 term in Eq.(18) due to dynamic pressure, the model would
have wrongly predicted atS scaling. Recall that the model
02 can only predict various qualitative trends, and cannot be

trusted for quantitative comparison with simulations. It can
perhaps be carefully calibrated to match the actual simula-
tions. However, here we have not undertaken such a task.
In Fig. 9, we have plotted® ., a@s a function ok, for
A | different forcing frequencies St, for Re=1.0. The resonant
1 peak occurs for largek with larger St, indicating that the
@) t natural frequency increases with the spring element, i.e., the
interfacial tension. In the inset, we see that the valuk af
resonancek is a linear function of St Indeed, from the

LRI LI IS W s v B L B LN

0.1

0.5:_ g::gfr‘m ODE [Fq. (21)], we see that resonance takes pIaceAkf(gg
i - — — - St=3n ~ St? Re. Also the ODE predicts that the resonant value of
i deformation variablgX| decreases with tSas seen in the
04 simulation.

In Fig. 10, we plot the phase Iggfor the same cases as

in Fig. 8, along with its ODE analo@. B8 decreases with
increasingk [Fig. 10@)]. In contrast to Re=0.13 becomes
negative fork>90, at Re=1.0, which represends phase
ahead of the strain rateAlso for the higher Reynolds num-
ber case,8 asymptotically approaches a nonzero value
Br_»=~—0.5. The model expression displays qualitatively
similar trends, as we progressively increase model Reynolds
number R from the Stokes flow. For Stokes flow, the phase

i [,éztan‘l(ét/k)] is restricted to the rang,w/2]. The Re
=0.1 simulation matches better with the model Stokes flow

®) v than with the R=0.1 model result. As mentioned before,
FIG. 13. (a) D vst’ for different interfacial tensions at Stz Re=10.0(b) such Q|screpancy |s-expected from the qualitative mOdel-. The
D vst' for different frequencies &=200, Re=10.0. negativeB value at increased value of Re can be explained

by noting that the negative second term in E2R) eventu-

ally dominates the other two terms. The curves®flas
Increased inertia leads to a more prominent resonance peglnction ofk) for nonzeroAI%, cross that for B=0 at a value
Dmax~0.138 for Re=1.0 compared Dma~0.09 at Re -2 Re corresponding to resonance. As has been shown in

=0.1. In Fig. &b), we show variation oD,,, with nondi- ~ -
mensional frequency St at fixddfor Re=0.1 and Re=1.0. Sec. IV, Bres at resonance for nonzereeRs the same 38 for

As with k, D, increases to a resonant peatore distinctin ke =0. Figure 1(b) showsp as a function of St at constakt
the case of Re=1)0before decreasing with increasing St. for Ré=0.1 and Re=1.0. For steady extensi6t=0 =0
The system has a natural frequency determined by the intefS €xpected. For Re=0.p, increases with the increase of
facial tension (fixed k). When the forcing frequency St flow frequency St. However, for the higher inertia c4e
matches the natural frequency, the system shows enhancgd-0. B first decreases to attain a negative minimum, and
resonant response. For larger St, the increased forcing frében increases to become positive. The model prediction is
quency leads to a decreased drop deformation, Bith, qualitatively similar (model Stokes floyv is §imilar to the
varying as St'. At high frequency, the magnitude of flow Re=0.1 simulatioh At relatively largek(k> 1/Re), with in-
strain |¢| is small due to the frequent flow reversdk|  creasing § 8 becomes negativsee Eq.(22)], reaches a
=1/SY. The deformatiorD ., is small for such small strains. minimum, and then increases to positive values. The phase
We resort to the ODE model to explain the observedand its analog finally approach/2 behind the strain rate
drop dynamics. In Figs.(8) and &b), we also plotX| [Eq.  but in phase with the flow strais, as St-. Here also we
(21)] as functions of bottk and 3 for Re=0, 0.1, and 1.0. note the significance of the dynamic pressure term. The
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01 [ 1

FIG. 14. (a) Dyay @and B vs k at St=47, Re=10.0.(b)
Dnax @nd B vs St atk=200, Re=10.0.
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model B without it [Eq. (23)] would be very different; it Dmax the strength of the perturbed flow first increases, and
approaches zero as-Ste. then decreases with increased interfagial tension. .Except for
very smallk=1, there appear four vortices at the interface.
C. Effects of deformation on flow field The vortices gradually move away from the drop centek as
. ) i increases. The vortex structure indicates significant vorticity
While the drop deforms in response to the imposed eXyeneration. Note that the imposed oscillating extensional
tensional flow, presence of the drop significantly changes thgq,y is free of vorticity. Finite interfacial tension leads to
flow itself. Note that for the density and viscosity matched, o ticity generation at the interface. The strength of genera-
cases considered here, the drop is felt due to the nonzegg,, i dependent on both the value of interfacial tension and

value of interfacial tension. In_Fig. 11, we examine the StruCyeformation. At high interfacial tension, the drop does not
ture of the f'OW aroun(_j an(_j inside the drop. The Sna|C_’Sh°taeform significantly resulting in smaller vorticitysee Fig.
are taken at different time instant$ represents half period 12(f) for k=200]

of the imposed flow; in this time the drop reaches from one
maximum in Fig. 11b) to another in FiQ- 1(1,) inan orthogq- D. Resonant drop dynamics and flow field at higher
nal directior]. Viewed from the tof(z direction, the drop is  jnertia
stretched in two orthogonal directions in the plane of the
flow. At T/4 with strain rates reducing, four vortices and With the inertia of a system increased, one would expect
nine stagnation points appear inside the drop.TA2, the =~ more energetic dynamics especially at resonance. In Fig. 13,
velocity of the imposed flow is zero while the figure demon-We investigate variation ob with interfacial tensions and
strates the perturbed flow due to the presence of the droflow frequencies at Re=10.M for variousk at fixed St
The vortices are stronger than thoseTas. The centers of =4 in Fig. 13a) attains highest value fde=600 indicating
the vortices appear outside the drop. A3, the perturbed a match of the natural and forcing frequency. Figur¢bl3
flow and the deformation are different from thoseTd#,  investigates the effects of varying St at a fided200. The
although the imposed flow is identical except for the axes ofesonance occurs at St=2.4We observe that unlike lower
extension being orthogonal. In contrast®4, the drop de- Re, at resonandét=2.4r), the time evolution oD does not
forms much less with no prominent vortex structure. Thisseem to settle down to a steady periodic motion, and there-
indicates an asymmetry in the extending and contractingore does not result in a single value for long-timg,,,. In
parts of a cycle of drop dynamics as well as a phase lagig. 14, we plot the long-tim®,,,, and phase lag with k
already seen between the drop deformation and the floland St. Due to the difficulty in determinatiol,,,, near
field. resonance is not plotted. Note also that unlike the cases with
In Fig. 12, we compare the perturbed flow Bt2 (it  lower Re, here deformation is much larger at resonance. For
corresponds to the zero velocity of the imposed oscillatingexample,D=0.5 corresponds té./B~=~3. At Re=10.0, in
flow) for different interfacial tension parameterSimilar to  agreement with the ODE model, the resonance shifts towards
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FIG. 15. Drop-flow interaction at St=2# k=200, Re=10.0.

higher interfacial tensiorik,.s~600 and lower frequency deformation in thez direction for this case. Indeed, squeez-
(Stes=2.47) compared to Re=1.(ks~50 and St,~8w) ing in the x-y plane leads to extension in the orthogonal
and follows the scaling,..~ St?> Re. 3 varies sharply near direction to ensure incompressibility. The large deformation
resonance as well; the continuously evolving dynamics preof drop leads to significant modification of the surrounding
cludes precise values in this regitsee also Fig. 10 flow field (see Fig. 15 We investigate the strong nonlinear
We concentrate on the drop dynamics near resonancé@periodic behavior at resonance by examining the frequency
Top view of the drop along with the flow field in the plane response of the drop. In Fig. & fast Fourier transform
passing through the drop center is plotted in Fig. 15 for dFFT) of D(t) displays a strong subharmonic component that
case close to resonan¢k=200, St=2.4). As mentioned Is 20 times in magnitude compared to the fundamental com-
above, the deformation continues to evolve without settlingoonent. In one flow period, the drop shape, while executing
down to a periodic motion. We consider a half-peribabf  periodic dynamics, undergoes two periods in two orthogonal
the flow starting at’=15m/4. The length of velocity vectors directions [Fig. 3(b)]. Therefore, at the current flow fre-
is decreased compared to Fig. 11 for clarity of presentationguency St=/y=2.4m, the nondimensional forcing fre-
In contrast to Re=1.@Fig. 11), difference in drop shapes quency for the drop deformatioB is 2 St=4.8r. In Fig.
one period apaifftFigs. 15b) and 15%f)] indicates the nonpe- 17(a) the strong peak at 27 corresponds to the subhar-
riodic motion. Figure 1) shows four strong vortices ap- monic, and the small one at 4:8s the fundamental. Away
pearing at the interface. The vortices further elongate thérom resonance, the periodically evolvily at St=2r and
drop in one direction and squeeze the drop in the orthogonad=200[Fig. 13b)] shows only a fundamental component at
direction, resulting in a narrow waist a/4. At T/2, with 4 in the frequency spectruifiFig. 14b)]. Often in nonlin-
zero imposed strain rate, the perturbed flow is directed in thear system, appearance of subharmonic indicates the onset of
opposite direction, squeezing at the head and extending &tansition to completely chaotic motidf.We note that the
the waist, resulting in a barrel-like shape. The appearance gfresent problem with a deforming drop is nonlinear even
the barrel-like shape has been reported by Ramaswamy amdthout inertia due to the fact that the boundary condition is
Leal et al® for bubbles in a pure extensional flow. In Fig. 16 prescribed at a moving interface which is determined as a
we plot three-dimensional drop shapésr the same time part of the solution. Such nonlinearity in Stokes flow results
instants as in Fig. 15n top and side views. We observe the in multiple states of deformable drof)]sHowever, for the
lack of periodicity in the drop dynamics as well as significantlower Reynolds number cases, the drop dynamics did not
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FIG. 16. Drop shapegop and side viewsat same time instants as Fig. 15,

St=2.4m, k=200, Re=10.0.

(a)

(b)

(c)

(d)

(e)

U]

FFT(D)

25000

20000

15000

10000

5000

0

St=2.4n

Phys. Fluids 17, 027103 (2005)

FFT(D)

25000

20000

15000

10000

5000

0

St=2n

10 10
(a) Non-dimensional frequency (b) Non-dimensional frequency

FIG. 17. FFT ofD (a) at resonance St=2# k=200 and(b) at nonreso-
nance St=2r, k=200.

a four-roll mill. It can profitably be used to examine time-
dependent nonviscometric rheology of emulsions and poly-
meric blends. In this flow the drop undergoes an oscillating
deformation that settles down after initial transient to a peri-
odic motion with a phase lag as well as a maximum and a
minimum deformation. Inertia plays an important role in the
deformation and the surrounding velocity field. As expected,
nominal oscillation tends to decrease the maximum deforma-
tion compared to steady extension. However, presence of
inertia leads to a case of resonance characterized by in-
creased deformation as was previously seen in a two-
dimensional investigatioﬁg.'30 The drop at finite Reynolds
number represents a damped mass-spring system having a
characteristic natural frequency; the interfacial tension and
the viscosity act as spring and damping elements. The im-
posed flow field represents a periodic forcing. The deforma-
tion reaches a maximum when the forcing frequency
matches the natural frequency. Along with the magnitude of
deformation, in this paper we also performed a detailed in-
vestigation of its phase. The phase displays both positive and
negative values and complex nonmonotonic variations with
interfacial tension, inertia, and frequency.

A simple ODE model is developed that captures the es-
sential physics of deformation, and successfully explains the
observed changes in the sign of phase and asymptotic scaling
at large values of interfacial tension and frequency. At finite
inertia, a dynamic pressure arises due to the periodic flow,
which plays a critical role in determining the deformation. It
leads to an extra forcing term in the ODE apart from the
viscous forcing due to the imposed flow. The dynamic pres-
sure is responsible for negative phase of deformation at
higher inertia. A negative deformation phase has profound
implications in the effective stresses in such emulsions. Note
that in an oscillatory-shear rheometry, a fluid is subjected to
a given oscillatory strain field; the in-phase and the out-of-

display such aperiodic behaviors for the parameters consid2n@se parts of the resulting stress determine the elasticity and
ered. With the inclusion of inertia, the convective term in Eq.the viscosity of the fluid. Similar tests can be performed at

(2) contributes to additional nonlinearity, which at resonancéinite Reynolds number to obtain inertial rheology, which

leads to observed subharmonic response.

VIIl. CONCLUSION

We have used direct numerical simulatiddNS) to in-

will be of critical importance in many industrial emulsion
flows, and will be investigated in future work.

As the imposed flow deforms the drop, the drop modifies
the flow. Although the imposed extensional flow is free of

vestigate drop deformation in an oscillating extensional flowvorticity, the presence of interfacial tensigwe consider
at nonzero Reynolds number. Such a flow can be realized ianly density and viscosity matched cask=sads to vorticity
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