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A viscous drop deforming in a planar oscillating extensional flow is numerically simulated using a
front-tracking finite-difference method. The effects of periodic forcing and interfacial tension are
studied at low but finite inertia. The oscillation leads to decreased deformation and bounded drop
shapes for conditions for which steady extension results in drop breakup. The drop displays a
resonance phenomenon where the deformation reaches a maximum when the forcing frequency
matches the natural frequency of the drop. The large deformation at resonance indicates a possible
mechanism for size selective breakup by flows with appropriate fluctuation frequency. The detail
structure of the flow at different time instants within a period for various values of interfacial tension
and frequency is investigated. The drop dynamics shows a complex phase relation with the forcing
flow. Competition between the inertia-induced dynamic pressure and the viscous stresses leads to
both positive and negative values of the phase and a complex variation with interfacial tension and
forcing frequency. A second-order ordinary differential equation model with appropriate
representation of the pressure and viscous forces is developed that qualitatively explains the phase
behaviors. For the highest inertia case considered in this papersRe=10.0d, the drop dynamics
becomes aperiodic at resonance marked by a strong subharmonic component in the frequency
spectrum. ©2005 American Institute of Physics. fDOI: 10.1063/1.1844471g

I. INTRODUCTION

Emulsions of immiscible drops with complex rheologi-
cal behavior appear in a number of industrial applications.
The shape, orientation, and size distribution of interacting
drops along with their material properties govern the non-
Newtonian stresses in these flows.1,2 Recognizing the critical
role played by the dynamics of a single drop, researchers
have extensively studied it since the pioneering work of Tay-
lor on a drop deforming in linear flows.3,4 For the most part,
previous research has been restricted toinertialess steady
Stokes flowusing various asymptotic methods5–9 and bound-
ary element simulation.10 The latter allows simulation of ar-
bitrary deformation as well as strongly interacting drops in a
concentrated emulsion.11,12 On the experimental side,
Grace13 reported several criteria for breakup with varying
viscosity ratios in pure shear and extensional flows. The ef-
fects of flow type were systematically investigated by Bent-
ley and Leal14 using a computer-controlled four-roll mill.
Experiments were performed on drop behaviors in shear
reversal15 and drop relaxation after step shear.16 With a view
to predicting rheology of emulsion, recently a number of
new analytical ellipsoidal droplet models17–19 have been de-
veloped with various degrees of success in matching experi-
mental observations. Although many applications involve
significantly high Reynolds numbers, much less attention has
been paid to the effects of inertia on drop deformation and
breakup. Leal and co-workers20–22conducted a series of stud-
ies of inertial effects on drop deformation in uniaxial exten-
sional flows. Inertia increases deformation. It gives rise to a
dynamic pressure that dominates the viscous stress to pro-
duce a barrel-like drop shape. The deformation displays a

complex dependence on viscosity and density ratios.20 At
large density ratio, increased drop viscosity leads to higher
damping, thus decreased deformation. Renardyet al.23,24nu-
merically simulated breakup of an isolated drop in a shear
flow at finite Reynolds number, and found that the critical
Reynolds number for breakup scales with inverse capillary
number. Along with inertia, oscillation and fluctuation re-
main the other important yet much less investigated aspects
in the deformation research. Turbulent flow of emulation of-
fers a case with such oscillations due to eddies of all possible
length scales and frequencies interacting with drops. On the
other hand, over the years oscillatory shear has become a
standard rheometer for testing the rheological properties of
emulsions.25,26 Recently, the deformation and breakup of
drops in slow oscillatory shear have been experimentally
investigated27,25 with results matched by both direct numeri-
cal simulation27 and linear viscoelastic theory.28

Recently, Sarkar and Schowalter29 have numerically in-
vestigated the deformation of a two-dimensional drop in the
flow field of a vortex and related extensional flows with ro-
tating axes of extension. They observed unusual phenomena
due to resonance such as increased drop deformation for in-
creasing surface tension in such time-periodic straining
flows. The drop acts as a damped mass-spring system, where
surface tension and viscosity play the roles of the spring and
damping elements, and the finite inertia, that of the mass. As
the interfacial tension is varied the natural frequency of the
system changes, and when it matches the forcing frequency,
the deformation attains a maximum. Subsequent small am-
plitude perturbative analysis30 using unsteady Stokes solu-
tion of the system further elucidated the resonant drop dy-
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namics. Resonance may provide an alternative mechanism
for efficient energy transfer from flow to the drop, and result
in its breakup at low strain amplitude but appropriate
frequency.31 In an experimental investigation of a turbulent
flow of bubbly liquid, Risso and Fabre32 observed bubble
breakup controlled by a similar resonance-like mechanism. It
should further be stressed that even for Stokes flow without
inertia, the history of the unsteady flow is critical for the
determination of the dynamic behavior of drops. For ex-
ample, at subcritical flow conditions where the drop does not
breakup according to steady analysis, an abrupt change in
strain rate or flow type may induce breakup.33,34

Here, we investigate the deformation of a three-
dimensional drop in an oscillating extensional flow at finite
inertia. The flow can be realized using a four-roll mill.3,14We
adopt a three-dimensional version of the front-tracking
finite-difference35,36 code that we used for our previous
investigations.29,37 In the following, the mathematical formu-
lation and its numerical implementation are briefly de-
scribed. We developed a second-order ordinary differential
equationsODEd model that adequately captures the underly-
ing physics and explains the numerical observations. A sys-
tematic investigation is conducted by varying Reynolds num-
ber, interfacial tension, and flow frequency. The resulting
drop dynamics and the modified flow field are described in
detail, and their relations discussed.

II. OSCILLATING EXTENSIONAL FLOW

We assume a planar oscillating extensional flow:

1u
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w
2 = «̇0 cossvtd10 1 0

1 0 0

0 0 0
21x

y

z
2 . s1d

Here, «̇0 is the maximum strain rate. The principle axis of
extension oscillates with the angular frequencyv. Note that
the flow is free of vorticity. However, presence of the drop
results in vorticity generation, as will be seen below. Also
note that the drop induces a nonzerow velocity component,
although the forcing flow is purely planar.

III. MATHEMATICAL FORMULATION

With a drop of Newtonian liquid suspended in another
Newtonian liquid, the flow is governed by thesNavier-
Stokesd equation:29,35,36

]sruWd
]t

+ = · sruWuWd = − = p + = · fm = uW + sm = uWdTg

−E
]B

dxWBknWGdsxW − xWBd, s2d

wherep is the pressure,r the local density of the fluid, and
m the local viscosity. The superscriptT represents transpose.
The velocityuW is continuous in the entire domainV, which
consists of the continuous phaseVc and the suspended drop
Vd as shown in Fig. 1sad. ]B is the drop-fluid interface con-
sisting of pointsxWB, G is the constant interfacial tension,k
the local curvature,nW the outward normal to the interface,

and dsxW −xWBd is the three-dimensional Dirac delta function.
The interfacial tension, which produces a jump in the normal
stress across the interface, is represented as a singular body
force29,35,36 anticipating its numerical implementation. The
variation of interfacial tensionG due to a nonuniform distri-
bution of surfactant is not considered. The fluid is incom-
pressible in both phases:

= ·uW = 0. s3d

The interface follows the fluid. The kinematic condition for
the interface is

dxWB

dt
= uWsxWBd. s4d

The velocity on the interfacexWB is related to the field velocity

uWsxWBd =E
V

dxWdsxW − xWBduWsxWd. s5d

IV. NUMERICAL IMPLEMENTATION

The above formulation leaves us with a system of partial
differential equations with spatially varying coefficients.
Conventionally, the Navier-Stokes equation needs to be
solved for each phase, matching boundary conditions at the
interface. Front-tracking method35,36 treats the entire flow
system as a single phase with a sharp variation of properties

FIG. 1. sad Schematic of the domain of calculation.sbd Discretized drop
interface by triangular elements.
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in a finite-thickness region across the interface. A smooth
representation of thed functions ins2d ands5d is used for the
numerical implementation:

DsxW − xWBd = D1sx − xBdD1sy − yBdD1sz− zBd,

D1sx − xBd =
1

4Dx
S1 + cos

p

2Dx
sx − xBdD , s6d

ux − xBu ø 2Dx.

Dx is grid spacing for the discretization. The Navier-Stokes
equation is solved in a discretized domain containing both
the dropVd and the continuous phaseVc. The drop interface
sfrontd is represented by a separate mesh composed of trian-
gular elements as shown in Fig. 1sbd. To prevent the ele-
ments from being excessively distorted, an adaptive regrid-
ding scheme is implemented for the front. The motion of the
element vertices determines the shape of the evolving inter-
face.

The velocity and pressure are described on a staggered
grid. The Navier-Stokes equation is solved by operator split-
ting projection finite-difference method. The method solves
the equations in two steps. The first step is to find an inter-
mediate velocityuW* by

rn+1uW * − sruWdn

Dt
= − = · sruWuWdn + FW n + = · t%n, s7d

wheret%n is the viscous stress.FW n is the body force, here
arising solely from interfacial tension. The spatial derivatives
are approximated by central differences in their conservative
form. The final velocity at next time stepuWn+1 is obtained by

uWn+1 − uW *

Dt
= −

1

rn+1 = pn+1, s8d

where the pressurepn+1 is calculated by requiringuWn+1 to be
divergence-freefEq. s3dg. Thus a Poisson’s equation for pres-
sure needs to be solved,

= ·S 1

rn+1 = pn+1D =
1

Dt
= ·uW * . s9d

We use a multigrid method for solving the pressure Poisson’s
equation.

As indicated in previous study,29 a fully explicit scheme
for calculating the stress= ·t%n suffers from restrictions on
time stepsDt,0.125sDxd2r /m, especially at low Reynolds
numbers. To overcome this restriction, we treat some of the
diffusive terms implicitly in alternate spatial directions
sADI d. The viscous term in Eq.s7d can be expressed as

= · t%n = Dxy + Dyz+ Dzx+ Dzz+ Dyy + Dxx, s10d

whereDxy, Dyz, Dzx are the mixed derivatives, and are com-
puted by an explicit scheme.Dzz, Dyy, Dxx are the double
derivatives to be treated implicitly. With ADI, the Eq.s7d is
further split into four steps:

rn+1uW * * * * − sruWdn

Dt
= − = · sruWuWdn + FW n + DxysuWnd

+ DyzsuWnd + DzxsuWnd, s11d

rn+1uW * * * − uW * * * *

Dt
= DzzsuW * * * d, s12d

rn+1uW * * − uW * * *

Dt
= DyysuW * * d, s13d

rn+1uW * − uW * *

Dt
= DxxsuW * d. s14d

Each implicit equations12d–s14d gives rise to a tridiagonal
system that is directly solved without iteration. The conver-
gence of the scheme is ensured by prescribing for the inter-
mediate velocities at the boundary]V sRef. 29d as

uW * = uW * * = uW * * * = uW * * * * = uWn+1. s15d

The ADI scheme reduces the time step by one order of mag-
nitude. We also adhere to other criteriaDt,2.0m / srUmax

2 d
and Dt,Dx/Umax at high Reynolds numbers to ensure the
overall convergence of our simulations.

V. NONDIMENSIONAL PARAMETERS

The mathematical problem can be nondimensionalized
using the undeformed drop radiusR and the inverse exten-
sional rate«̇0

−1 as the length and the time scales, respectively.
In this paper, in the interest of brevity, we have restricted
ourselves to density and viscosity ratios to the value of unity.
Note that the present numerical scheme can handle different
density and viscosity inside the drop. Three nondimensional
parameters define the problem. They are Reynolds number
Re=r«̇0R

2/m, inverse capillary numberk=Ca−1=G / s«̇0mRd,
and nondimensional frequencysStrouhal numberd St
=v / «̇0. Typical values for a drop of alcohol insoluble in
water are m=0.018 g cm−1 s−1, r=0.82 g cm−3, and G
=1–10dynes cm−1 sDavies and Rideal38 p. 17d. For such a
drop of radius, R=1 cm, suspended in watersm
=0.01 g cm−1 s−1, r=1.0 g cm−3, and «̇0=0.1 s−1d, one ob-
tains Re=10 andk=1000–10000.

VI. A SIMPLE SECOND-ORDER ODE MODEL

Although the flow is governed by the Navier-Stokes
equation, the underlying physics of drop deformation can be
described by a simple ODE model as has been demonstrated
by Sarkar and Schowalter.29,37 A drop subjected to a linear
extensional flow can be modeled as a damped mass-spring

system with massr̂R̂3, dampingm̂ sviscosityd, and springĜ

sinterfacial tensiond. R̂ is the drop radius. The hat is used to
differentiate the model variables from their real counterparts.
Forced by the imposed flowG0gstd sG0 is the magnituded,
deformation of the drop is modeled by a second-order ODE
representing a harmonic oscillator:
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r̂R̂3Ẍ + m̂R̂Ẋ + ĜX = m̂R̂G0gstd + r̂R̂3G0ġstd. s16d

The initial condition is

Ẋs0d = G0gs0d, Xs0d = 0. s17d

The forcing terms in the right-hand side of Eq.s16d are cho-
sen to mimic the effects of the forcing flow. The first forcing
term corresponds to the viscous stress and the second term
represents the dynamic pressure. From the momentum equa-
tion s2d, r]u/]t, =p, one can see that a time-dependent
velocity G0gstd gives rise to such a pressure. As we will see,
the pressure gradient plays a crucial role in the drop dynam-
ics, and the inclusion of the second term in the forcing is
critical for accurate description of the underlying physics. An
oscillating flow is specified bygstd=expsivtd.

The model is nondimensionalized using the length scale

R̂ and time scaleR̂/G0:

R̂e Ẍ + Ẋ + k̂X = gstd + R̂e ġstd, s18d

Ẋs0d = gs0d, Xs0d = 0, gstd = expsit Stˆ d, s19d

where the nondimensional numbers are Reˆ = r̂R̂G0/ m̂, k̂

=Ĝ / sm̂G0d, Stˆ =vR̂/G0, and t8= tG0/ R̂. The solution of this
ODE is

X =
1 + i R̂e Stˆ

k̂ − R̂e St2 + i Stˆ
expsit Stˆ d, s20d

with a magnitude

uXu =Î 1 + Ŝt2 R̂e2

fk̂ − Ŝt2 R̂eg2 + Ŝt2
, s21d

and a phase lagb̂ behind the forcingfX= uXuexpist8 Stˆ −b̂dg:

b̂ = tan−1 Ŝt

k̂
s1 − k̂ R̂e + Ŝt2 R̂e2d. s22d

One can retrieve the Stokes limituXu= k̂−1 and b̂

=tan−1sStˆ / k̂d. Expressions21d indicates that resonance oc-

curs at k̂=Stˆ 2 Reˆ for fixed Stˆ and Reˆ , and the resonance

phaseb̂res=tan−1sStˆ / k̂d from Eq. s22d is the same as in the
Stokes limit. Also, we note the significance of the dynamic
pressure termfthe last term in Eq.s18dg. In absence of this
term the phase lag would become

b̂ = tan−1 Ŝt

k̂ − R̂e Ŝt2
. s23d

Equationss22d and s23d obtain different behaviors and dif-

ferent limits ask̂→` or Stˆ →`. The model variableX rep-
resents the deformation or stretching of the drop as will be
appropriately defined later. Note that this model is only
qualitative, and may not quantitatively compare with the
simulation. However, we claim that it contains the essential
physics, and therefore will accurately describe the observed
trends and various scalings, as will be seen below.

VII. RESULTS

We simulated an isolated drop in a box-shaped domain
as shown in Fig. 2. The domain is discretized by an 81
381381 grid. An oscillating extensional flowfEq. s1dg is
imposed at the domain boundary. The radius of the unde-
formed drop is 0.1 of the domain size. We ensured that simu-
lations are independent of the size of the domain. We also
investigated grid convergence by increasing the discretiza-

FIG. 2. The drop in the computational domain with an oscillating exten-
sional flow imposed at the boundary.

FIG. 3. sad Drop axes evolving with nondimensional time in an oscillatory
extensional flow Length-L ssolidd, breadth-B sdash-double-dottedd, width-W
sdashedd. sbd Drop shape at equal interval during one flow period; Re=0.1,
St=4p, k=10.
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tion to 12931293129 without finding significant change in
the result. See Sarkar and Schowalter29 for detail conver-
gence study and comparison with Stokes flow for a two-
dimensional version of the algorithm.

Experimental study of the three-dimensional drop shape
under shear flow39 showed that the drop maintains an ellip-
soidal shape up to moderate deformations. In Fig. 3sad, we
plot the three drop axes with nondimensional timet8= t«̇0.
The maximumL and minimumB axes are the maximum and
minimum distances of the drop surface from its center within
the plane of the imposed flow. The widthW is in thez direc-
tion perpendicular to the plane of the flow. The drop deforms
from a spherical shapeL=B=W=R. After a transient period

each axis reaches a steady oscillating state. It is noted that
W/R departs from 1.0, which indicates that a small deforma-
tion exists in the third dimension. In Fig. 3sbd, top view sz
directiond of the drop in the oscillating flow is shown to-
gether with the flow field in the plane through the center of
the drop. The drop alternately experiences stretching in or-
thogonal directions. Within one period of the flow, the defor-
mation reaches maximum twice. The maximum deformation
does not coincide with the maximum strain ratesvelocityd of
the flow sfirst, third, and fifth framesd, indicating a phase
difference between the deformation and the strain rate.

FIG. 4. D vs t8 for different initial conditions; Re=0.1, St=4p, k=10.

FIG. 5. D vs t8 for different k in steady extensional flow. St=0, Re=0.1.
Inset showsDsteadyvs k along with Maffettone-MinalesMM d model.

FIG. 6. D vs t8 for different k; St=4p, Re=0.1. Inset showsDmax vs k.

FIG. 7. D /Dmax vs t8 St for differentk. Inset shows the phase lagb vs k.
St=4p, Re=0.1.
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For a nearly spherical drop, a criterion for deformation
was suggested by Taylor,3,4 viz., D=sL−Bd / sL+Bd. In Fig.
4, we plotD as a function of nondimensional timet8. After
an initial transient,D reaches a steady oscillating state where
the maximum and the minimum reach their long-time values
Dmax andDmin, respectively. The nonzeroDmin snonspherical
shaped was also observed for drops in oscillatory shear.27,25

The presence of viscosity gives rise to a finite relaxation time
preventing recovery of the spherical shape. As shown in Fig.
3sbd, within one period of the flow, the drop experiences the
same stretching in two orthogonal directions. As a result, the
oscillating frequency ofD is twice the flow frequency. In
Fig. 4, we compare the evolution ofD under different initial
strain rates. The spherical drop is introduced in the flow at
the instant of minimumszerod and maximum strain rates,
respectively. For initial zero strain ratessolid lined, D first
shoots to a higher maximum value. As the flow reverses,D
then decreases to a minimum. Thereafter lower maxima ap-
pear; maxima and minima asymptotically approachDmax and
Dmin. For an initial strain rate at its maximumsdashed and
dotted linesd, D does not overshoot in the first period. Al-
though the drop experiences different startup transients for
different initial conditions, eventually identical long-time
evolutions are achieved. In the same plot, the history ofD for
a drop initially at the flow centersdashed lined and another
initially away from the flow centersdotted lined are com-
pared. Indistinguishable evolution ofD is observed for these
two cases. The drop is subjected to the same strain rate«̇
= «̇0 cossvtd independent of its position in the linear flow
fsee Eq.s1dg leading to identical deformation. In the follow-
ing, we look at the influences of interfacial tension, flow
frequency, and Reynolds number on the drop dynamics.

A. Drop deformation: Steady extension and effects of
oscillation

We first investigate the drop deformation in a steady
extensional flow in Fig. 5 as a benchmark. We consider a
relatively low Reynolds number of Re=0.1. The evolution of
D is plotted for different interfacial tension parameterk. At
low values of ksk=5.0d, the drop experiences continuous
stretching without reaching an equilibrium indicating even-
tual breakup. Ask is increased to 10.0, the extensional
growth is restrained by increased interfacial tension.D
reaches a steady value after a transient evolution. We found
that abovek=10.0 a steady deformationDsteadyexists in the
long-time limit, while belowk=10.0 the drop breaks up after
transients. Such a criticalkcr sor a critical capillary number
Cacr=kcr

−1d has been experimentally observed and predicted
by various analytical models. In the inset, the variation of
Dsteady with k is plotted. The Maffettone–MinalesMM d
model17 sdash-dotted lined slightly underpredicts the numeri-
cal simulation. The predicted critical deformationDcr

<0.35 and the corresponding critical capillary number Cacr

<0.1 agree with the experimental results in the Stokes flow
limit.14 The observedk−1 scaling agrees with the prediction
of small-deformation theorysD,Cad.

We turn to drop deformation in an oscillating extensional
flow. In Fig. 6 the evolution ofD for differentk is plotted to
demonstrate the effects of interfacial tension. In contrast to
steady extensionsFig. 5d, a bounded shape is achieved even
at k=5.0, and fork=10.0 a lower deformation is observed.
Oscillating extensional flow prevents drop breakup even at
very small interfacial tensions because the flow reverses be-
fore the drop could break. In the inset, the variation ofDmax

FIG. 8. sad Dmax vs k and ODE predictions,uXu vs k̂; sbd
Dmaxvs St and ODE prediction,uXu vs Stˆ .
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with k is plotted. For values ofk,10, Dmax shows a slight
increase with increasingk; as in the two-dimensional case29

it represents a resonance phenomenon characteristic of a fi-
nite inertia system. The system behaves like a harmonic os-
cillator, having a natural frequency varying with the interfa-
cial tensionk. If the natural frequency and forcing frequency
match, the drop experiences an enhanced deformation. In the
inset of Fig. 6,Dmax is seen to scale ask−1 for k→`. A
similar linear relation betweenDmax and the strain rate am-

plitude in the small-deformation range was also reported in
the previous oscillatory-shear study.25 Below we will use the
ODE model of Sec. VI to qualitatively explain the drop re-
sponse including various asymptotes withuXu acting as a sur-
rogate forDmax.

For the same flow, differentk leads to different phases
for D as is seen in Fig. 6. In Fig. 7, we plot the scaled
deformationD /Dmax vs the scaled timet8St after the initial
transient. For comparison, the absolute strain rateu«̇ / «̇0u
= ucossvtdu ssolid lined is also shown in the same figure. The
deformation lags behind the strain rate. In the inset of Fig. 7,
the phase lagb of the deformation behind the flow strain rate
is plotted as a function ofk. It shows that the deformation
lags by a value between 0 andp /2. At low interfacial tension
sk→0d, b approachesp /2. With increasingk, b decreases.
Both are predicted by the ODE models22d for low Re, as is
the case here.

We conclude that the introduction of oscillation in an
imposed extensional flow leads to an oscillating drop shape,
which tends to settle down in the long-time limit to a peri-
odic behavior with a phase lag behind imposed strain rate. As
in the two-dimensional case29,30 finite inertia results in a
resonance of the system. In the following, we explore these
phenomena in detail, and explain the observation with the
ODE model.

B. Deformation: Resonance and phase dynamics

We increase the Reynolds number to 1.0. In Fig. 8sad,
the variation of deformationDmax with interfacial tensionk is
shown for both Re=0.1 and Re=1.0 at St=4p. As k in-
creases,Dmax first increases to a peak, and then decreases.

FIG. 9. Dmax vs k for different St; Re=1.0. Inset shows the scaling ofkres

,St2.

FIG. 10. sad b vs k and ODE predictions,b̂ vs k̂; sbd b

vs St and ODE predictionb̂ vs Stˆ .
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FIG. 11. Drop-flow interaction at steady oscillating state for different time instants; St=4p, k=50, Re=1.0.

FIG. 12. Flow perturbation due to drop at differentk; St=4p, Re=1.0.
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Increased inertia leads to a more prominent resonance peak
Dmax<0.138 for Re=1.0 compared toDmax<0.09 at Re
=0.1. In Fig. 8sbd, we show variation ofDmax with nondi-
mensional frequency St at fixedk for Re=0.1 and Re=1.0.
As with k, Dmax increases to a resonant peaksmore distinct in
the case of Re=1.0d before decreasing with increasing St.
The system has a natural frequency determined by the inter-
facial tension sfixed kd. When the forcing frequency St
matches the natural frequency, the system shows enhanced
resonant response. For larger St, the increased forcing fre-
quency leads to a decreased drop deformation, withDmax

varying as St−1. At high frequency, the magnitude of flow
strain u«u is small due to the frequent flow reversalsu«u
=1/Std. The deformationDmax is small for such small strains.

We resort to the ODE model to explain the observed
drop dynamics. In Figs. 8sad and 8sbd, we also plotuXu fEq.

s21dg as functions of bothk̂ and Ŝt for R̂e=0, 0.1, and 1.0.

For Stokes flowsR̂e=0d, we observe no resonance withuXu
decreasing monotonically with increasingk̂ or Ŝt. As R̂e is
increased to 0.1sdash-dotted linesd and 1.0sdashed linesd,
uXu shows resonance behavior with increasingk̂ or Ŝt, similar
to the simulation results. The resonance peak increases with

increased Rˆ e. The model also predictsk̂−1 and Ŝt−1 scaling
for uXu similar to Dmax. Note that in the absence of the last
term in Eq.s18d due to dynamic pressure, the model would

have wrongly predicted a Sˆ t−2 scaling. Recall that the model
can only predict various qualitative trends, and cannot be
trusted for quantitative comparison with simulations. It can
perhaps be carefully calibrated to match the actual simula-
tions. However, here we have not undertaken such a task.

In Fig. 9, we have plottedDmax as a function ofk, for
different forcing frequencies St, for Re=1.0. The resonant
peak occurs for largerk with larger St, indicating that the
natural frequency increases with the spring element, i.e., the
interfacial tension. In the inset, we see that the value ofk at
resonancekres is a linear function of St2. Indeed, from the

ODE fEq. s21dg, we see that resonance takes place fork̂res

, Ŝt2 R̂e. Also the ODE predicts that the resonant value of

deformation variableuXu decreases with Sˆ t as seen in the
simulation.

In Fig. 10, we plot the phase lagb for the same cases as

in Fig. 8, along with its ODE analogb̂. b decreases with
increasingk fFig. 10sadg. In contrast to Re=0.1,b becomes
negative fork.90, at Re=1.0, which representsa phase
ahead of the strain rate. Also for the higher Reynolds num-
ber case,b asymptotically approaches a nonzero value
bk→`<−0.5. The model expression displays qualitatively
similar trends, as we progressively increase model Reynolds

number R̂e from the Stokes flow. For Stokes flow, the phase

fb̂=tan−1sŜt / k̂dg is restricted to the rangef0,p /2g. The Re
=0.1 simulation matches better with the model Stokes flow

than with the Rˆ e=0.1 model result. As mentioned before,
such discrepancy is expected from the qualitative model. The
negativeb value at increased value of Re can be explained
by noting that the negative second term in Eq.s22d eventu-

ally dominates the other two terms. The curves ofb̂ sas

function of k̂d for nonzero Rˆ e, cross that for Rˆ e=0 at a value

k̂=Ŝt2 R̂e corresponding to resonance. As has been shown in

Sec. IV,b̂res at resonance for nonzero Rˆ e is the same asb̂ for

R̂e=0. Figure 10sbd showsb as a function of St at constantk
for Re=0.1 and Re=1.0. For steady extensionsSt=0d b=0
as expected. For Re=0.1,b increases with the increase of
flow frequency St. However, for the higher inertia casesRe
=1.0d, b first decreases to attain a negative minimum, and
then increases to become positive. The model prediction is
qualitatively similar smodel Stokes flow is similar to the

Re=0.1 simulationd. At relatively largek̂sk̂.1/R̂ed, with in-

creasing Sˆ t b̂ becomes negativefsee Eq.s22dg, reaches a
minimum, and then increases to positive values. The phase
and its analog finally approachp /2 behind the strain rate«̇
but in phase with the flow strain«, as St→`. Here also we
note the significance of the dynamic pressure term. The

FIG. 13. sad D vs t8 for different interfacial tensions at St=4p, Re=10.0.sbd
D vs t8 for different frequencies atk=200, Re=10.0.
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model b̂ without it fEq. s23dg would be very different; it

approaches zero as Stˆ →`.

C. Effects of deformation on flow field

While the drop deforms in response to the imposed ex-
tensional flow, presence of the drop significantly changes the
flow itself. Note that for the density and viscosity matched
cases considered here, the drop is felt due to the nonzero
value of interfacial tension. In Fig. 11, we examine the struc-
ture of the flow around and inside the drop. The snapshots
are taken at different time instantsfT represents half period
of the imposed flow; in this time the drop reaches from one
maximum in Fig. 11sbd to another in Fig. 11sfd in an orthogo-
nal directiong. Viewed from the topsz directiond, the drop is
stretched in two orthogonal directions in the plane of the
flow. At T/4 with strain rate«̇ reducing, four vortices and
nine stagnation points appear inside the drop. AtT/2, the
velocity of the imposed flow is zero while the figure demon-
strates the perturbed flow due to the presence of the drop.
The vortices are stronger than those atT/4. The centers of
the vortices appear outside the drop. At 3T/4, the perturbed
flow and the deformation are different from those atT/4,
although the imposed flow is identical except for the axes of
extension being orthogonal. In contrast toT/4, the drop de-
forms much less with no prominent vortex structure. This
indicates an asymmetry in the extending and contracting
parts of a cycle of drop dynamics as well as a phase lag
already seen between the drop deformation and the flow
field.

In Fig. 12, we compare the perturbed flow atT/2 sit
corresponds to the zero velocity of the imposed oscillating
flowd for different interfacial tension parameterk. Similar to

Dmax, the strength of the perturbed flow first increases, and
then decreases with increased interfacial tension. Except for
very smallk=1, there appear four vortices at the interface.
The vortices gradually move away from the drop center ask
increases. The vortex structure indicates significant vorticity
generation. Note that the imposed oscillating extensional
flow is free of vorticity. Finite interfacial tension leads to
vorticity generation at the interface. The strength of genera-
tion is dependent on both the value of interfacial tension and
deformation. At high interfacial tension, the drop does not
deform significantly resulting in smaller vorticityfsee Fig.
12sfd for k=200g.

D. Resonant drop dynamics and flow field at higher
inertia

With the inertia of a system increased, one would expect
more energetic dynamics especially at resonance. In Fig. 13,
we investigate variation ofD with interfacial tensions and
flow frequencies at Re=10.0.D for various k at fixed St
=4p in Fig. 13sad attains highest value fork=600 indicating
a match of the natural and forcing frequency. Figure 13sbd
investigates the effects of varying St at a fixedk=200. The
resonance occurs at St=2.4p. We observe that unlike lower
Re, at resonancesSt=2.4pd, the time evolution ofD does not
seem to settle down to a steady periodic motion, and there-
fore does not result in a single value for long-timeDmax. In
Fig. 14, we plot the long-timeDmax and phase lagb with k
and St. Due to the difficulty in determination,Dmax near
resonance is not plotted. Note also that unlike the cases with
lower Re, here deformation is much larger at resonance. For
example,D=0.5 corresponds toL /B<3. At Re=10.0, in
agreement with the ODE model, the resonance shifts towards

FIG. 14. sad Dmax and b vs k at St=4p, Re=10.0.sbd
Dmax andb vs St atk=200, Re=10.0.
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higher interfacial tensionskres<600d and lower frequency
sStres<2.4pd compared to Re=1.0skres<50 and Stres<8pd
and follows the scalingk̂res, Ŝt2 R̂e. b varies sharply near
resonance as well; the continuously evolving dynamics pre-
cludes precise values in this regionssee also Fig. 10d.

We concentrate on the drop dynamics near resonance.
Top view of the drop along with the flow field in the plane
passing through the drop center is plotted in Fig. 15 for a
case close to resonancesk=200, St=2.4pd. As mentioned
above, the deformation continues to evolve without settling
down to a periodic motion. We consider a half-periodT of
the flow starting att8=15p /4. The length of velocity vectors
is decreased compared to Fig. 11 for clarity of presentation.
In contrast to Re=1.0sFig. 11d, difference in drop shapes
one period apartfFigs. 15sbd and 15sfdg indicates the nonpe-
riodic motion. Figure 15sbd shows four strong vortices ap-
pearing at the interface. The vortices further elongate the
drop in one direction and squeeze the drop in the orthogonal
direction, resulting in a narrow waist atT/4. At T/2, with
zero imposed strain rate, the perturbed flow is directed in the
opposite direction, squeezing at the head and extending at
the waist, resulting in a barrel-like shape. The appearance of
the barrel-like shape has been reported by Ramaswamy and
Leal et al.20 for bubbles in a pure extensional flow. In Fig. 16
we plot three-dimensional drop shapessfor the same time
instants as in Fig. 15d in top and side views. We observe the
lack of periodicity in the drop dynamics as well as significant

deformation in thez direction for this case. Indeed, squeez-
ing in the x-y plane leads to extension in the orthogonal
direction to ensure incompressibility. The large deformation
of drop leads to significant modification of the surrounding
flow field ssee Fig. 15d. We investigate the strong nonlinear
aperiodic behavior at resonance by examining the frequency
response of the drop. In Fig. 17sad fast Fourier transform
sFFTd of Dstd displays a strong subharmonic component that
is 20 times in magnitude compared to the fundamental com-
ponent. In one flow period, the drop shape, while executing
periodic dynamics, undergoes two periods in two orthogonal
directions fFig. 3sbdg. Therefore, at the current flow fre-
quency St=v / ġ=2.4p, the nondimensional forcing fre-
quency for the drop deformationD is 2 St=4.8p. In Fig.
17sad the strong peak at 2.4p corresponds to the subhar-
monic, and the small one at 4.8p is the fundamental. Away
from resonance, the periodically evolvingD at St=2p and
k=200 fFig. 13sbdg shows only a fundamental component at
4p in the frequency spectrumfFig. 17sbdg. Often in nonlin-
ear system, appearance of subharmonic indicates the onset of
transition to completely chaotic motion.40 We note that the
present problem with a deforming drop is nonlinear even
without inertia due to the fact that the boundary condition is
prescribed at a moving interface which is determined as a
part of the solution. Such nonlinearity in Stokes flow results
in multiple states of deformable drops.41 However, for the
lower Reynolds number cases, the drop dynamics did not

FIG. 15. Drop-flow interaction at St=2.4p, k=200, Re=10.0.
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display such aperiodic behaviors for the parameters consid-
ered. With the inclusion of inertia, the convective term in Eq.
s2d contributes to additional nonlinearity, which at resonance
leads to observed subharmonic response.

VIII. CONCLUSION

We have used direct numerical simulationsDNSd to in-
vestigate drop deformation in an oscillating extensional flow
at nonzero Reynolds number. Such a flow can be realized in

a four-roll mill. It can profitably be used to examine time-
dependent nonviscometric rheology of emulsions and poly-
meric blends. In this flow the drop undergoes an oscillating
deformation that settles down after initial transient to a peri-
odic motion with a phase lag as well as a maximum and a
minimum deformation. Inertia plays an important role in the
deformation and the surrounding velocity field. As expected,
nominal oscillation tends to decrease the maximum deforma-
tion compared to steady extension. However, presence of
inertia leads to a case of resonance characterized by in-
creased deformation as was previously seen in a two-
dimensional investigation.29,30 The drop at finite Reynolds
number represents a damped mass-spring system having a
characteristic natural frequency; the interfacial tension and
the viscosity act as spring and damping elements. The im-
posed flow field represents a periodic forcing. The deforma-
tion reaches a maximum when the forcing frequency
matches the natural frequency. Along with the magnitude of
deformation, in this paper we also performed a detailed in-
vestigation of its phase. The phase displays both positive and
negative values and complex nonmonotonic variations with
interfacial tension, inertia, and frequency.

A simple ODE model is developed that captures the es-
sential physics of deformation, and successfully explains the
observed changes in the sign of phase and asymptotic scaling
at large values of interfacial tension and frequency. At finite
inertia, a dynamic pressure arises due to the periodic flow,
which plays a critical role in determining the deformation. It
leads to an extra forcing term in the ODE apart from the
viscous forcing due to the imposed flow. The dynamic pres-
sure is responsible for negative phase of deformation at
higher inertia. A negative deformation phase has profound
implications in the effective stresses in such emulsions. Note
that in an oscillatory-shear rheometry, a fluid is subjected to
a given oscillatory strain field; the in-phase and the out-of-
phase parts of the resulting stress determine the elasticity and
the viscosity of the fluid. Similar tests can be performed at
finite Reynolds number to obtain inertial rheology, which
will be of critical importance in many industrial emulsion
flows, and will be investigated in future work.

As the imposed flow deforms the drop, the drop modifies
the flow. Although the imposed extensional flow is free of
vorticity, the presence of interfacial tensionswe consider
only density and viscosity matched casesd leads to vorticity

FIG. 16. Drop shapesstop and side viewsd at same time instants as Fig. 15,
St=2.4p, k=200, Re=10.0.

FIG. 17. FFT ofD sad at resonance St=2.4p, k=200 andsbd at nonreso-
nance St=2p, k=200.
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generation. Vorticity generation is an important mechanism
for modifying the vortex structure of a turbulent flow with
possible applications in drag reduction. With increased defor-
mation at higher Reynolds number such effect on the flow
also increases. For larger Reynolds number, at resonance the
drop deformation becomes highly nonlinear, and fails to
reach a periodic motion. It is also marked by the appearance
of strong subharmonic component that indicates a possible
route to chaotic motion upon further increase of inertia. The
inertia-induced resonance offers an alternative mechanism
for drop breakup at relatively lower strain rate, but appropri-
ate frequency. It is particularly relevant in turbulent flows
with a wide range of length and frequency scales.
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