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Mechanisms of spontaneous chain formation
and subsequent microstructural evolution in
shear-driven strongly confined drop monolayers†

Sagnik Singha, a Abhilash Reddy Malipeddi, b Mauricio Zurita-Gotor,c

Kausik Sarkar, b Kevin Shen,‡d Michael Loewenberg,d Kalman B. Miglere and
Jerzy Blawzdziewicz *af

It was experimentally demonstrated by Migler and his collaborators [Phys. Rev. Lett., 2001, 86, 1023;

Langmuir, 2003, 19, 8667] that a strongly confined drop monolayer sheared between two parallel plates

can spontaneously develop a flow-oriented drop-chain morphology. Here we show that the formation

of the chain-like microstructure is driven by far-field Hele-Shaw quadrupolar interactions between

drops, and that drop spacing within chains is controlled by the effective drop repulsion associated with

the existence of confinement-induced reversing streamlines, i.e., the swapping trajectory effect. Using

direct numerical simulations and an accurate quasi-2D model that incorporates quadrupolar and

swapping-trajectory contributions, we analyze microstructural evolution in a monodisperse drop

monolayer. Consistent with experimental observations, we find that drop spacing within individual chains

is usually uniform. Further analysis shows that at low area fractions all chains have the same spacing, but

at higher area fractions there is a large spacing variation from chain to chain. These findings are

explained in terms of uncompressed and compressed chains. At low area fractions most chains are

uncompressed (spacing equals lst, which is the stable separation of an isolated pair). At higher area

fractions compressed chains (with tighter spacing) are formed in a process of chain zipping along

y-shaped structural defects. We also discuss the relevance of our findings to other shear-driven systems,

such as suspensions of spheres in non-Newtonian fluids.

1 Introduction

Flow-assisted formation of ordered structures in systems of
rigid,1–4 deformable,5–13 and active,14–20 particles has numerous
important practical applications. Examples include particle control
in microfluidic sorting devices1,2,21–23 and manufacturing advanced
microstructured materials (e.g., microlens arrays,24 nanostructured

protein microfibers,25 and filled polymeric materials with ani-
sotropic properties26–31). Moreover, hydrodynamically induced
interparticle coordination plays a significant role in pattern
formation in biological matter.32,33 Thus, spontaneous generation
of patterns in non-equilibrium systems has practical and funda-
mental relevance.

Confinement gives rise to qualitatively new hydrodynamically
driven collective dynamics. Confinement-induced collective
phenomena include the formation of a variety of string-like
microstructures in particulate systems in the creeping flow
regime13,34–37 and in microfluidic flows with inertia.2 Hydrodynamic
crystals (in 1D and 2D), which are stabilized by confinement,21,38–43

exhibit complex dynamics, including wave propagation,40 dis-
locations in a hydrodynamically ordered lattice,42 fingering
instabilities,42 and buckling instabilities.37

Additional complexity of microstructural evolution arises
from particle deformability. Ordered systems of confined hard
spheres can be stabilized by flow. However, in the absence of
such factors as inertia,2 strong excluded-volume effects at high
concentrations,3 and/or nonlinearities associated with non-
Newtonian properties of the suspending fluid, hard spheres
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do not spontaneously form ordered structures. By contrast, con-
fined suspensions of deformable particles spontaneously self-
assemble into a variety of structures under flow,5,7,9,13,34,44–51 even
at moderate volume fractions of the dispersed phase, i.e., in the
regime where the system evolution is dominated by hydrodynamic
interactions rather than excluded-volume effects.5,13,34,45–47,52–55

To advance our understanding of confinement-induced
spontaneous ordering of deformable particles, we investigate
development of self-organized particle arrangements in systems
of deformable drops in strongly confined shear flow in a narrow-
gap Couette device.5,45,47,52–54 Several years ago we suggested10,56

that the observed spontaneous ordering of a drop monolayer into
string-like arrangements oriented in the flow direction (pearl-
necklace chain structures45) results from stabilization of flow-
aligned drop arrays by the far-field Hele-Shaw quadrupolar
interactions. Such hydrodynamic interactions between particles

in narrow-gap parallel-wall channels are associated with the
fluid flow driven by a quasi-2D far-field perturbation pressure
with the four-fold quadrupolar symmetry.

In the present paper we expand on this premise, and explicitly
show that key structural features of the system evolution can be
faithfully described by a combination of the quadrupolar inter-
actions and a hydrodynamic drop repulsion that results from the
swapping trajectory effect57 in concert with the self-centering
mechanism for confined deformable particles.13,58

At the core of our analysis is a simple quasi-2D model that
combines the quadrupolar and swapping-trajectory contributions.
The model correctly predicts microstructural evolution of a drop
monolayer, as evidenced by a comparison with direct finite-
difference front-tracking (FD/FT) simulations. We use this model
to describe salient features of the drop-chain microstructure,
including mechanisms of relaxation of microstructural defects
and the evolution of drop spacing. The model allows us to
efficiently investigate statistical aspects of the evolving monolayer
morphology at long times, in the regime where direct simulations
are not feasible due to a high numerical cost.

2 Summary of experimental
observations

As illustrated in Fig. 1 (experimental images reprinted from ref. 5),
a monolayer of drops undergoing shear flow between two parallel
walls can spontaneously organize into ‘‘pearl-necklace’’ chains
aligned with the flow. The drops in a chain may subsequently
coalesce, which results in formation of elongated strings and
ribbons. Our focus is on the system evolution before the
coalescence into strings occurs, i.e., on the process of formation
of ordered drop arrangements and on the morphology of the
spatial drop distribution.

Examples of self-organized ordered chains for different emulsion
compositions, flow strengths, and channel widths are presented in
Fig. 2 (reprinted from ref. 45, 47 and 52). In all cases the drop size is
comparable to the channel width, and the drops reside approxi-
mately in the midplane of the channel. We observe that,
depending on the experimental conditions, the drops can either

Fig. 1 Self-assembly of flow-oriented structures in a strongly confined
drop monolayer in Couette flow. The experimental images show that an
initially disordered system (time t = 40 s) spontaneously self-organizes into
drop chains (t = 180 s); chain formation is followed by drop coalescence
(t = 820 s), which ultimately gives rise to emergence of ribbon-like
structures at very long times (t = 8.6 � 103 s). Images reprinted from
ref. 5. Flow and vorticity directions as indicated.

Fig. 2 Examples of experimentally observed self-organized drop-chain structures. (a) Tightly spaced pearl-necklace chains; (b) sparsely spaced chains with a
large number of defects; (c) well-organized sparsely spaced chains. Images reprinted from (a) ref. 45, (b) ref. 47, and (c) ref. 52. Flow direction as indicated.
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form ‘‘pearl-necklace’’ chains of closely spaced drops (Fig. 2(a))
or chains with a much larger drop separation (Fig. 2(b and c)).
The chains can either be well ordered (Fig. 2(a and c)) or have
numerous defects (Fig. 2(b)).

Fig. 3 shows typical microstructural irregularities and defects that
are analyzed here using direct FD/FT simulations and a quasi-2D
theoretical model of drop dynamics. These defects include y-shaped
chain configurations, coexisting chains with dense and sparse
particle spacing, and laterally oriented chain defects formed by
extra particles hydrodynamically bound to a chain side.

3 Methods: formulation of theoretical
models
3.1 Analysis of hydrodynamic mechanisms controlling
formation of ordered microstructure

We propose that two fundamental hydrodynamic mechanisms
are responsible for the observed drop ordering in a shear-driven

confined drop monolayer. First, the quadrupolar Hele-Shaw
scattered flow produced by individual drops drives the neighboring
drops into alignment.10 Second, the swapping57 (reversing)
trajectory mechanism controls drop separation within the flow-
oriented chains by providing effective drop repulsion.

The quadrupolar interparticle interactions and swapping-
trajectory effect stem from the corresponding confinement-
induced features of the flow field

v1 = _gzêx + dv1 (1)

produced by an individual drop in the imposed Couette flow

v0 = _gzêx (2)

between two parallel walls. Here _g is the shear rate, êx is the unit
vector in the flow direction, and z is the transverse coordinate
normal to the walls (see Fig. 4 for notation and the system
schematic). The imposed Couette flow (2) vanishes in the
midplane of the channel z = 0, and the walls move in opposite
directions.

The flow dv1, scattered by a drop, acts on the surrounding
drops, producing relative drop motion and leading to the
microstructural evolution of the drop distribution. Without
interparticle hydrodynamic interactions all drops would move
to the midplane of the channel due to deformation-induced
migration away from the walls.59–61 Since the drops then would
be in the same flow-vorticity plane, there would be no relative
particle motion.

Fig. 5 and 6 illustrate the key features of the velocity field (1)
that are critical for generation of the observed chaining behavior
of a drop monolayer. The numerical results presented were
obtained using the FD/FT method, described in more details in
Section 3.4.

Fig. 5(a) depicts the flow field (1) in the centerplane of the
channel. The results show that this scattered flow has the
characteristic four-fold symmetry of the Hele-Shaw quadrupole.10

We recall that in the slit geometry, the 3D near-field flow generated
by force multipoles induced on the particles decays exponentially to
a quasi-2D Hele-Shaw flow pattern at large distances.62,63 In the
Couette flow, a 2D quadrupole is the leading-order contribution.
Fig. 5(b) illustrates how the corresponding quadrupolar hydro-
dynamic interactions between drops drive chain formation and
produce attraction between flow-aligned drops.

The effective hydrodynamic repulsion that controls drop
spacing within flow-aligned chains stems from the swapping-
trajectory effect, first demonstrated for confined rigid spheres,57

Fig. 3 Typical defects in the chain microstructure of a shear-driven drop
monolayer. Middle panels show experimental images, right panels direct
numerical simulations, and left panels the results of a quasi-2D model, devel-
oped in Section 3.3, that includes quadrupolar interactions plus swapping
trajectory repulsion (QI+STR model). (a) y-shaped defects associated with chain
zipping; (b) common pattern of coexisting high-density and low-density chains
observed at long times; and (c) laterally oriented chain defects. Experimental
image (a) reprinted from ref. 47 and experimental images (b) and (c) reprinted
from ref. 5. The flow direction x is horizontal, and vorticity direction y is vertical.

Fig. 4 System schematic. A monolayer of deformable drops undergoes
Couette flow between two parallel walls. The plane z = 0 is the midplane of
the channel, and x is the flow direction.
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and subsequently discussed for a variety of systems.2,13,21,64–68

Fig. 6(a) shows the flow field in the flow-gradient plane (x,z)
passing through the center of the drop. The flow pattern viewed
in this plane exhibits reversing streamlines,57,64–66 which are the
cause of the swapping-trajectory repulsion. In Stokes flow, reversing
streamlines stem from confinement;57 at finite Reynolds numbers
they can also arise as a result of inertial effects.64

As schematically depicted in Fig. 6(b), and quantitatively
shown in Fig. 6(c) the reversing flow moves interacting drops
away from the midplane of the channel onto opposite-directed
streamlines, driving the drops apart. Unlike the corresponding
behavior for rigid particles in Stokes flow, the swapping trajectory
repulsion between deformable drops decays with interparticle
distance. This is because after reaching a sufficient separation,
drops move back towards the midplane of the channel due to
deformation-induced hydrodynamic migration13,59–61,69–72 (the
self-centering effect).

We will call this behavior the damped swapping-trajectory
effect. It has been shown that the decaying inter-drop effective
repulsion, combined with the far-field quadrupolar attraction,
results in a stable stationary drop distance lst in a confined
pair.13,58,65 Our results show that this distance, attained in an
isolated confined pair at long times (see Fig. 6(c)), plays a nontrivial
role in the microstructural evolution. The effective hydrodynamic
repulsion that results from the damped swapping-trajectory effect
is quantitatively modeled in Section 3.3, and its influence on the
dynamics of the drop monolayer is discussed in Section 4.

To examine the role and quantify the effect of the quad-
rupolar and swapping-trajectory interactions in the microstructural
evolution, we introduce two simplified suspension-dynamics
models. In the first one, the particles interact only via pair-
additive quadrupolar flow fields, and in the second one both
quadrupolar and swapping-trajectory interactions are included.
In both models, drops reside close to the midplane of the
channel because of deformation-induced self-centering; thus
the models are quasi-2D.

3.2 Evaluation of the quadrupolar hydrodynamic interactions

As discussed in our previous publications,10,62,63 the scattered
flow far from a particle confined in a parallel-wall channel
tends exponentially to a parabolic Hele-Shaw form driven by a
2D harmonic pressure distribution,

dv1 ¼ �
1

8
Z�1ðH � 2zÞðH þ 2zÞrdp1ðqÞ: (3)

Fig. 6 Mechanism of the swapping-trajectory repulsion for deformable
drops in Couette flow. (a) Streamlines in the flow-gradient plane (x,z) for a
single confined drop in the imposed Couette flow (2); the result obtained
from FD/FT simulation. (b) Schematic explaining the swapping trajectory
repulsion. Pink drops represent the initial and intermediate configurations;
the long-time drop positions at the stable stationary separation lst are shown
in red. Deformation-induced drop migration towards the midplane of the
channel is indicated by green arrows. The figure is not to scale. (c) FD/FT
simulation results for the trajectory of drop 1 in a pair of drops initially aligned
along the axis x (in the midplane of the channel). The graph shows the
transverse displacement z1 of drop 1 vs. relative drop separation x12 in the flow
direction. The pairwise stable stationary separation lst is indicated.

Fig. 5 Quadrupolar mechanism of drop alignment. (a) Flow streamlines in
the midplane of a channel for a single confined drop in the imposed Couette
flow (2) (direct FD/FT simulations). The flow has a fourfold symmetry
characteristic of the quadrupolar Hele-Shaw flow. (b) The mechanism by
which Hele-Shaw quadrupolar interactions drive drops into alignment and
produce inter-drop attraction oriented in the direction of the imposed flow.
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Here Z is the fluid viscosity, H is the channel width, and q =
xêx + yêy is the lateral position with respect to the particle
center. In the Hele-Shaw regime, the pressure field is independent
of the transverse position z; thus the pressure perturbation dp1(q)
and the flow field (3) can be represented using the 2D multipolar
expansion.

Unlike the corresponding behavior in Poiseuille flow, in
Couette flow (2) there is no dipolar contribution because of the
fore-aft symmetry of the system. Therefore, the leading-order
multipolar contribution is the Hele-Shaw quadrupole

dp1(q) = _gZqpq(q) (4)

where

pqðqÞ ¼ �
d2 x2 � y2
� �

4r4
(5)

is the dimensionless quadrupolar pressure field, q is its
dimensionless quadrupolar moment, r = |q|, and d is the drop
diameter.

Since the pressure gradient rp and particle velocity U in a
parallel-wall channel satisfy the linear mobility relation

U = �Z�1H2mrp (6)

(where m is a dimensionless mobility coefficient), the far-field
interparticle hydrodynamic interactions have a structure consistent
with the quadrupolar form of the scattered flow (3)–(5). Using (6)
and the superposition approximation

p qið Þ ¼
X

jai

dp1 qij

� �
(7)

for the pressure at the position qi of a particle i in a multiparticle
system, we find the corresponding superposition relation for the
velocity Ui of particle i,

Ui ¼ _gdQ
X

jai

vq qij

� �
; (8)

where

vqðqÞ ¼ d3r
x2 � y2
� �

4r4
(9)

is the normalized quadrupolar hydrodynamic-interactions field,
and qij = qi � qj is the relative position of particles i and j.

The dimensionless quadrupolar moment Q = mq(H/d)2 of
the quadrupolar hydrodynamic interactions (8) depends on the
capillary number Ca (and thus on drop deformation) and the
confinement ratio H/d. It depends also on the Marangoni
number in the presence of surfactant. Since, by symmetry,
there is no quadrupolar moment for spherical particles, the
Hele-Shaw quadrupolar interactions stem entirely from drop
deformation and/or surfactant redistribution. We thus have
Q = O(Ca) in the small-deformation regime.

Quadrupolar-interactions model with excluded-volume repulsion.
Since attractive quadrupolar forces alone would quickly lead to

particle overlaps, our quadrupolar approximation (8) is enhanced
by adding a near-field repulsion uR(qij),

Ui ¼ _gd
X

iaj

Qvq qij

� �
þ uR qij

� �� �
; (10)

where

uR(q) = �rV(r) (11)

is a gradient of a short range repulsion potential V(r), which
mimics near-field hydrodynamic repulsion of nearly touching
drops. We call the system defined by eqn (10) the quadrupolar-
interactions (QI) model.

In our simulations the excluded-volume interactions (11) are
modeled using the generalized Yukawa potential

V(r) = A0r
�me�k0r (12)

with m = 8 and k0d = 6. The amplitude A0 is determined from
the normalization condition Qvq(êx) + uR(êx) = 0, corresponding
to the balance between the quadrupolar and excluded volume
contributions for a flow-oriented pair of drops at contact.

3.3 Evaluation of hydrodynamic repulsion resulting from the
damped swapping-trajectory effect

The QI model described above plays only an auxiliary role in our
analysis, because it does not include the swapping-trajectory
repulsion. In this section we develop a more comprehensive model
that includes both the quadrupolar and damped swapping-
trajectory effects.

As explained in our previous studies,57,67 the swapping-
trajectory repulsion of the particles in an interacting pair i, j
is caused by the wall reflection of the scattered flow produced
by one particle towards the other particle. This reflected flow
results in transverse displacements of the interacting particles
into oppositely directed streamlines of the imposed Couette
flow; the Couette flow (2) then drives the displaced particles
apart. This mechanism is manifested in particle trajectories
and in the reversing structure of streamlines surrounding a
confined particle (see Fig. 6).

For deformable drops, the transverse cross-streamline
migration velocity uiz of drop i in a pair i, j has a two-drop
and a single-drop contribution,

uiz(qij,zi) = usw
iz (qij) + uc

iz(zi). (13)

The first term usw
iz (qij) is the swapping-trajectory velocity that

results from hydrodynamic interactions of drops i and j. This
term is an odd function of the relative drop position qij, and at
the leading order it is independent of the drop deformation.
The second term uc

iz(zi) is the deformation-induced single-
particle migration velocity toward the center of the channel
(the self-centering contribution).

For a given transverse position zi, the applied Couette flow
convects drop i with the velocity

usw
8i (zi) = a _gziêx, (14)

oriented in the flow direction x. The mobility coefficient a in
eqn (14) accounts for the drop interaction with the walls.
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To incorporate the 3D swapping-trajectory dynamics described
by eqn (13) and (14) into a quasi 2D suspension model, we use a
quasistatic approximation for drop migration in the transverse
direction z. Accordingly, we assume that the z-position of drop i in
an interacting pair of drops i, j can be determined by balancing
the two-particle swapping and single-particle self-centering
contributions in eqn (13),

usw
iz (qij) + uc

iz(zi) = 0. (15)

The transverse quasi-equilibrium position of drop i,

zi = z0(qij), (16)

is evaluated from the velocity balance (15) and inserted into
eqn (14), which yields the quasistatic approximation

usw
8i (qij) = a _gz0(qij)êx (17)

for the 2D drop velocity usw
8i produced by the damped swapping-

trajectory effect. The velocity (17) is oriented in the flow direction
and always drives the drops apart.

To obtain a closed-form expression for the swapping-trajectory
repulsion (17) we provide explicit relations for the drop-migration
contributions in the transverse drift balance (15). Based on the
observation that the displacement of the drops from the midplane
position z = 0 is small (see the results shown in Fig. 6(c)), we assume
the linear relation

uc
iz(zi) = �b_gzi (18)

for the deformation-induced migration velocity, where the
proportionality coefficient b = O(Ca2) depends on the capillary
number and the confinement ratio H/d.

Based on the known far-field form of the reflected flow
driving the transverse swapping drift near a planar wall,67 using
two-wall superposition assumption in the near-field region, and
taking into account the exponential decay of non-Hele-Shaw
flow components at large distances in a two-wall system,62,63 we
propose a simple phenomenological approximation

usw
iz (qij) = _gdAusw

0 (qij), (19)

usw0 ðqÞ ¼
d3x

1þ ek r�r0ð Þð Þ b2 þ jrj2ð Þ2
(20)

for the hydrodynamically induced transverse drift, where A, k,
r0, and b are fitting parameters used to match direct simulation
data. In particular, r0 is the distance at which the transition
occurs from the algebraic to exponential decay of the flow that
produces the swapping-trajectory effect.

By combining relations (14)–(20) we obtain the quasi-2D
model of the swapping-trajectory repulsion,

usw
8i (qij) = _gdBusw

0 (qij)êx, (21)

where B = Aa/b. The swapping trajectory effect decays at large
interparticle distances due to the deformation-induced self-
centering of the drops between the channel walls. Therefore,
the swapping trajectory repulsion decays more rapidly in systems
with large capillary numbers. This qualitative argument is
consistent with the observation that since b = O(Ca2) for small

capillary numbers, we have B = O(Ca�2), which implies that the
range of the swapping trajectory repulsion increases in a small-
deformation limit.

The result described by eqn (20) and (21) has been derived
for a single pair of interacting drops. In a multi-drop system,
the swapping-trajectory interactions are obtained by the super-
position of pairwise contributions. The superposition assumption
does not introduce any additional approximations, because of
linearity of relations (17) and (18).

Quadrupolar-interactions plus swapping-trajectory repulsion
model. The swapping-trajectory repulsion effect (21) is combined
with the quadrupolar hydrodynamic interactions (10) to obtain a
comprehensive quadrupolar-interactions plus swapping-trajectory
repulsion (QI+STR) model, defined by the equation

Uki ¼ _gd
X

iaj

Qvq qij

� �
þ Busw0 qij

� �
êx þ uR qij

� �� �
: (22)

As already discussed, the model also incorporates the near-field
excluded-volume repulsion (11) to prevent configurations with
overlapping drops. We note that, while the QI+STR model does
not explicitly describe the drop shape, drop deformation is
implicitly incorporated in the description through the values
of the model parameters (as described below).

Along the flow direction x the quadrupolar hydrodynamic
interaction vq(qij) is attractive, and the damped swapping-
trajectory interaction usw

0 (qij)êx is repulsive. For an isolated pair
of drops, these interactions balance at a stable stationary distance
lst. Consistent with earlier analyses,13,58 the particles in a pair
achieve this separation at long times. The role of the pairwise
stationary drop separation lst in controlling drop spacing is
discussed in Section 4.

3.4 Benchmark system used to test theoretical predictions

The role of the quadrupolar and swapping-trajectory interactions
will be determined by comparing direct benchmark simulations
obtained by the FD/FT method58,73–78 to the corresponding
results from the QI and QI+STR models. As illustrated in Fig. 4,
the benchmark system consists of deformable drops confined
between two parallel walls at the confinement ratio H/d = 1.2. The
periodic boundary conditions are applied in the flow direction x
and vorticity direction y.

We assume that the drops are surfactant free, the capillary
number Ca = 0.125 is moderate, and the viscosity Z of the drops
and continuous phase is the same. The Reynolds number is
small but finite, Re = 0.1. Here Ca = Z _ga/s, and Re = rf _ga2/Z,
where s is the interfacial tension between the drop and
continuous-phase fluids, rf is the mass density of the fluids
(the same for drops and the continuous phase), and a = d/2 is
the drop radius. The finite inertia has a discernible quantitative
effect on the drop motion, but key hydrodynamic mechanisms
of drop ordering and crucial phenomenological features of the
structural evolution are unaffected.

The benchmark FD/FT simulations were performed for two
area fractions of the drop monolayer, fA = 0.05 and fA = 0.3 (where

fA ¼
1

4
pnd2, and n = N/A is the number of drops per unit area).
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The results for N = 76 drops at area fraction fA = 0.05 and N =
456 drops at fA = 0.3 are presented in Fig. 7. At time t = 0 the drops
were placed randomly in the midplane of the channel. The
initial conditions, which were also used in our QI and QI+STR
calculations, are depicted in Fig. 8.

According to our simulations, the average Taylor deformation
parameter D = (L � B)/(L + B) for drops in the system with area
fraction fA = 0.05, is D = 0.22 (here L and B are the major and
minor axes of the drop). This is the same value as the one found
for an isolated drop under identical flow conditions (see the
image shown in Fig. 6(a)). At area fraction fA = 0.3, the Taylor

deformation parameter is slightly lower, D = 0.21. This very minor
difference in D indicates that the drop shape is dominated by the
applied flow; hydrodynamic interactions between drops do not
affect the shape in a significant way.

The benchmark-simulation frames presented in Fig. 7 (also
see ESI,† Movies M1 and M2) indicate that for both low and high
area fractions the drops rapidly form a partially ordered flow-aligned
drop-chain microstructure with a significant number of defects. At
longer times the system slowly anneals, resulting in a gradually
increasing order. As illustrated in Fig. 3, there are marked similarities
between the direct-simulation results and the experimental images,
which indicates that the benchmark FD/FT simulations were
performed in an experimentally relevant regime.

Benchmark-system parameters for the QI and QI+STR
models. To directly compare the QI and QI+STR models to the
benchmark FD/FT simulations, we need to evaluate the quad-
rupolar moment Q and the parameters of the swapping-trajectory
repulsion to match the benchmark-system dynamics. The match-
ing was performed based on an analysis of the relative drop
velocity for a pair of drops in a periodic unit cell. The quadrupolar
moment was evaluated from the far-field behavior of the direct-
simulation data, and the parameters of the swapping-trajectory
interactions were obtained from the intermediate and near-field
results. Only drops aligned in the flow direction x were consid-
ered in the parameter evaluation process.

Details of our matching procedure are described in Appen-
dix A, and the model parameters used in our QI and QI+STR
simulations are listed in Table 1. The longitudinal pair correlation

Fig. 7 Benchmark FD/FT simulations of a strongly confined monolayer of drops in Couette flow. System evolution is shown for area fraction (a) fA = 0.05 and
(b) fA = 0.3 (also see ESI,† Movies M1 and M2). The random initial configurations are depicted in Fig. 8, and system parameters are listed in Section 3.4.

Fig. 8 Initial conditions for the benchmark FD/FT simulations shown in
Fig. 7 and for the QI and QI+STR calculations depicted in Fig. 9 and 10.
Area fraction (a) fA = 0.05 and (b) fA = 0.3. The particles are randomly
placed in the midplane of the channel. Flow and vorticity directions as
indicated.
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function and the nearest-neighbor distributions discussed in
Sections 4.3 and 4.5 are calculated by averaging over 10 simulation
runs for a system of 512 particles.

4 Results

In what follows we use our theoretical models to determine how the
quadrupolar interactions and hydrodynamic swapping-trajectory
repulsion control the structural evolution in a drop monolayer.
We start our discussion by comparing the benchmark FD/FT
simulations presented in Fig. 7 with the QI (Section 4.1) and QI+STR
(Section 4.2) simulations performed for exactly the same initial drop
configurations (depicted in Fig. 8) and matched parameter values
(as described in Appendix A).

4.1 Hele-Shaw quadrupolar interactions induce drop
alignment

To differentiate the effects of the quadrupolar interactions (8)
and the swapping-trajectory contribution (21), we first consider
numerical predictions of our auxiliary QI model (10). The
simulation frames shown in Fig. 9 indicate that even without
the swapping-trajectory repulsion drops rapidly align to form
chains along the flow direction. This behavior is consistent
with experimental data and direct simulation results presented
in Fig. 7. The QI model thus confirms that the quadrupolar
interactions drive drops into flow-aligned chains.

Our simulations, however, also reveal that QI model is
insufficient to reproduce correct interparticle spacing. The differ-
ences between the direct FD/FT and approximate QI simulations
are especially striking at the low area fraction fA = 0.05 (see
Fig. 7(a) and 9(a)). According to the direct simulations the drops
in already formed chains are sparsely spaced, with the center-to-
center distance of approximately two particle diameters. In
contrast, the QI simulations yield chains of touching particles;
moreover these chains are more fragmented. The discrepancies
between the direct and approximate quadrupolar simulations
are less pronounced at fA = 0.3 (see Fig. 7(b) and 9(b)), but clear
differences in particle spacing and dissimilarities in the type
and number of defects in the chain structure are still evident.

Our results thus indicate that an important factor that controls
particle spacing is missing in the QI model. This factor—the
swapping-trajectory mechanism—is discussed next.

4.2 A combination of quadrupolar and swapping-trajectory
interactions governs morphological evolution

A comparison between the simulation images obtained using the
rudimentary QI model (Fig. 9) and the more comprehensive QI+STR
method (Fig. 10) shows that the damped swapping trajectory effect

that gives rise to the hydrodynamic swapping-trajectory repulsion
plays an important role in chain forming. Adding the swapping-
trajectory repulsion to the quadrupolar model rectifies the
particle spacing problem present in the QI simulations. We
find that at the low area fraction fA = 0.05 the QI+STR model
yields uniform spacing within all chains. For fA = 0.3 the
spacing within individual chains is quite uniform, but there
are significant spacing differences from chain to chain. These
findings are consistent with the results of the direct FD/FT
simulations depicted in Fig. 7.

According to Fig. 7(a) and 10(a), at fA = 0.05, drop con-
figurations in the direct and QI+STR simulations are nearly
identical, provided that the timescale is adjusted by rescaling
simulation time by a constant factor. In some cases the
observed chain reconnections lead to a different chain topology
or different relative timing of restructuring events. However,
taking into account that particle trajectories in multiparticle
systems are typically sensitive to small perturbations, the
QI+STR model provides close to quantitative description of
the drop dynamics. Therefore, the model correctly accounts
for the microstructural evolution mechanisms in the far-field
and intermediate-field regions.

At the higher area fraction fA = 0.3, the QI+STR simulations
do not reproduce individual drop arrangements, except at
relatively short times (see the first two panels in Fig. 10(b)).

Table 1 Parameters of the QI and QI+STR models for the benchmark
system

Quadrupolar moment Swapping-trajectory repulsion

Q kd b/d r0/d B
0.096 5.8 0.5 1.90 2.32

Fig. 9 Predictions of the auxiliary QI model for the benchmark system.
The evolution of the drop monolayer is shown for the area fraction (a) fA =
0.05 and (b) fA = 0.3. The drops form flow-oriented chains, but the
microstructure of the monolayer (especially drop spacing) significantly
differs from the benchmark FD/FT simulation results depicted in Fig. 7. The
results demonstrate that the model is incomplete.
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A comparison of the systems at a similar evolution stage requires
a more significant time-scale adjustment than the one needed for
fA = 0.05. Yet, the model provides good semi-quantitative agree-
ment with the benchmark FD/FT simulations. In particular, in
both systems presented in Fig. 7(b) and 10(b), the chains formed
at the early stage of the evolution are wavy, branched, and
disordered, and they gradually anneal into an increasingly
ordered structure.

The time rescaling that is involved in matching the QI+STR
model to the benchmark FD/FT simulations stems from the
fact that the far-field quadrupolar interactions (9) overpredict
relative particle motion at small and moderate interparticle
distances. This overprediction is especially pronounced in the
vorticity direction, where there is no compensating swapping-
trajectory effect. Thus, particle ordering and subsequent
restructuring of the chain configuration occur at earlier times
in the QI+STR model than in the corresponding direct FD/FT
simulations. The overall correct form of the quadrupolar
streamlines, however, leads to correct predictions of the micro-
structural evolution.

We find that both, in the direct and QI+STR simulations,
chains merge either by connecting their ends drawn together
by the quadrupolar interactions (see Fig. 11) or by a zipping
process depicted in Fig. 12. The zipping process dominates
at high area fractions, and the end-to-end merging is more
frequent at low drop concentrations.

In the following section we use long-time QI+STR simulations
to determine mechanisms that control drop spacing and structural
evolution in a well-developed chain microstructure.

Fig. 10 Predictions of the QI+STR model for the benchmark system. The evolution of the drop monolayer is shown for the area fraction (a) fA = 0.05
and (b) fA = 0.3 (also see ESI,† Movies M3 and M4). Drop configurations are labeled by the adjusted time t 0 = t/e with e = 0.6 for fA = 0.05 and e = 0.2 for
fA = 0.3. The time-adjusted results agree quantitatively for fA = 0.05 and semi-quantitatively for fA = 0.3 with the benchmark FD/FT simulations
depicted in Fig. 7.

Fig. 11 Chain merging by end-to-end connection. Initially disconnected
short chains merging into a percolating chain are shown in different colors.
The chains maintain approximately equal drop spacing throughout the
process. (Results from QI+STR model).
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4.3 Swapping-trajectory repulsion qualitatively alters drop
spacing statistics

To characterize the shear-induced flow-oriented drop ordering
at long times we consider the longitudinal pair correlation
function

g8(r) = hg(q)iy, |y| r 151. (23)

Here y is the angle formed by the line of centers q with the flow
direction, h�iy denotes angular averaging over all pairs forming
angles in the specified range, and g(q) is the 2D pair correlation
function. The cutoff angle y = 151 has been chosen based
on typical chain orientations to include mostly pairs of drops
belonging to the same chain and exclude pairs of drops from
different chains.

The longitudinal pair correlation function (23) is depicted in
Fig. 13 for several systems with a well-developed long-time
chain microstructure. The left panels show the results of
QI+STR calculations. To help elucidate the role of the swapping-
trajectory repulsion, the right panels depict QI simulation results,
for quadrupoles with no swapping-trajectory effect. The results are
presented for low (top panels), intermediate (middle), and high
area fractions (bottom).

The predictions of the QI+STR model show that at a low area
fraction fA = 0.05 (Fig. 13(a)) the function g8(r) is sharply peaked.

For an intermediate area fraction fA = 0.15 (Fig. 13(b)), however,
the peaks disappear, indicating an increased disorder. Yet, they
reemerge at a high area fraction fA = 0.3 (Fig. 13(c)), but with a
smaller spacing. In contrast, in the absence of the swapping-
trajectory repulsion there is no reemergent behavior of the peak
structure, and the pair correlation function g8(r) is always sharply
peaked, with a fixed peak spacing approximately equal to the drop
diameter d. The qualitatively distinct longitudinal correlations
obtained from the more complete QI+STR and the rudimentary
QI models reveal a nontrivial role of the swapping-trajectory inter-
actions in controlling the particle distribution.

4.4 Drops within individual chains are equally spaced, but
different chains can have different spacing

To further elucidate the statistics of drop spacing in the self-
organized chain structure at long times, Fig. 14 presents the

Fig. 12 Chain merging by zipping. Two sparsely populated chains approach
each other to form a y-shaped defect, and then merge in a chain zipping
process in which particles are absorbed into a resulting denser chain. Drop
spacing in the resulting chain is initially non-uniform, with tighter spacing in
the zipping region. The spacing nonuniformities relax at long times; the
relaxation is diffusive. (Results from QI+STR model).

Fig. 13 Long-time longitudinal pair correlation functions g8. Left panels
show the results for the comprehensive QI+STR model and right panels
provide the corresponding results for the auxiliary QI model for the area
fraction (a) fA = 0.05; (b) fA = 0.15; and (c) fA = 0.3 at time _gt = 4500.
According to the QI+STR model, at the area fraction fA = 0.05 the pair
correlation function g8 is sharply peaked, at fA = 0.15 the peaks disappear,
and they reemerge at fA = 0.3. The graphs represent averages over 10
simulation runs for a system of 512 particles (see representative ESI,†
Movies M5–M7).
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probability distribution fd(r/d) of the dimensionless drop-to-
drop distance r/d for representative individual chains at the
area fractions fA = 0.05, 0.15, and 0.3. The chains for which
the probability distribution is shown are marked in blue in the
corresponding simulation images depicted above the plot.

The results are presented both for fully equilibrated chains (left
and middle panels) and unequilibrated chains (right panels).

We find that for all area fractions the probability-distribution
peaks in fully equilibrated chains are sharp and equally spaced,
which demonstrates that the drop spacing within the chains is

Fig. 14 Representative examples of the probability distribution function of the drop-to-drop distance in selected drop chains in a QI+STR system at
three area fractions (as labeled). The plots show the probability distribution fd vs. the normalized drop separation r/d for the chains highlighted in blue in
the simulation images shown above each plot. Samples are chosen to represent either equilibrated chains with small (left panels) and large (middle
panels) spacing or unequilibrated chains with irregular spacing (right panels). Since the overall results indicate that for fA = 0.05 most equilibrated chains
have the same (large) spacing with drop separation rE lst, no chain with a small spacing is shown. Examples of chains with irregular spacing (right panels)
include (a) out-of-equilibrium chain undergoing zipping and (b and c) chains that are deformed because of hydrodynamic interactions with other chains.
The results are presented for a system of 512 particles at time _gt = 4500.
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uniform. The peaks in chains where drop spacing is affected by
hydrodynamic interactions with other chains (see examples
shown in the right panels of Fig. 14(b and c)) are broad, but
well separated; they often have double- or triple-peak structure,
indicating the existence of zones with different spacing. The
peak structure in far-from-equilibrium chains that result from
zipping is often irregular, which is due to a considerable drop
spacing variation near the zipping region in the resultant chain
(see the zipping example shown in Fig. 14(a)).

Consistent with a prediction of Sarkar and Singh,58 we
observe that at a low area fraction fA = 0.05, i.e., in the regime
where the chains are fragmented and do not strongly interact
with each other, the peak spacing in equilibrated chains
approximately equals the stationary spacing in an isolated pair
of drops lst (for parameters used in our simulations we have
lst/d = 2.08). In contrast, at higher area fractions, i.e., under
conditions for which the chains either span the entire system or
strongly interact with other chains, the drop spacing is typically
smaller than lst. We find that for fA = 0.15 drop spacing varies
widely from chain to chain; and for fA = 0.3 many neighboring
chains are closely packed (with drop separation r/d E 1),
although some chains have larger spacing.

Uncompressed and compressed chains. The analysis presented
above indicates that drop chains behave similarly to uncompressed
and compressed chains of beads connected by identical springs. If a
finite bead chain is free of external forces, all springs are fully
relaxed to their equilibrium length. When the chain is infinite or
compressive forces act on the terminal beads, the bead spacing
can be smaller than the equilibrium spring length, but under
equilibrium conditions the spacing still remains uniform.

Based on this analogy, we refer to drop chains with the
spacing r E lst as uncompressed, and r o lst as compressed
(see the schematic shown in Fig. 15). Similar to the spring
chains, finite equilibrated drop chains with free ends are
uncompressed, because of the hydrodynamic force balance on
the interior and terminal drops. Note that drop chains under

tension above the stability threshold would get fragmented,
because the hydrodynamic interactions weaken with the increasing
drop distance (similar to springs softening under strain). Chains
with spacing significantly larger than lst thus do not form.

4.5 The observed drop-spacing characteristics are reflected in
the first- and second-neighbor distance distributions

The observations presented in Section 4.4 are based on an
examination of drop spacing in selected individual chains. Our
conclusions, however, are also quantitatively confirmed by the
statistical analysis of the first- and second-nearest neighbor-
distances l1 and l2 in the drop monolayer.

Fig. 16(a) shows the probability distribution f1(l1/d) for the
normalized nearest-neighbor distance l1/d, and Fig. 16(b) pre-
sents the probability distribution f21(l2/l1) for the ratio between
the second- and first-nearest-neighbor distances. The function
f1(l1/d) provides statistical information regarding the spacing
distribution for drops in all chains. In contrast, the function
f21(l2/l1) characterizes the spacing uniformity within the chains
by comparing the distances between a given drop and its left
and right neighbor. Except for the terminal drops in a chain,
the first- and second-nearest-neighbors are on the opposite
sides of a given drop.

The results depicted in Fig. 16 indicate that the function
f21(l2/l1) is sharply peaked at l2/l1 = 1 for all area fractions,
confirming that drop spacing in individual chains is uniform.
In contrast, the width of the nearest-neighbor distribution
f1(l1/d) strongly depends on the area fraction. The distribution
is narrow and peaked at the stable pair separation l1 E lst for
fA = 0.05, showing that at low area fractions the chains are
mostly uncompressed. The peak is broad (spanning the range
d t l1 t lst) for fA = 0.15, indicating that the degree of
compression of different chains varies. For fA = 0.3, the peak
narrows and shifts towards the drop contact distance, l1/d = 1,
which corresponds to the maximal chain compression.

This behavior of the nearest neighbor distributions is consistent
with the observed spacing variation from chain to chain (see Fig. 14)
and the reemergent peak structure of the pair distribution g8(r). The
function g8(r) loses the oscillatory structure at fA = 0.15 (see Fig. 13),
because peaks originating from uniform spacing in individual

Fig. 15 Definition of uncompressed and compressed chains. (a) An iso-
lated finite chain relaxes to the uncompressed state with drop spacing lst.
Cyan arrows and black arrows represent the quadrupolar attraction and
swapping-trajectory repulsion, respectively, which balance each other at
drop separation lst. (b) In a percolating compressed chain drop spacing is
smaller than lst. Since the swapping-trajectory repulsion is stronger than
the quadrupolar attraction, the drops are subject to repulsive inter-drop
hydrodynamic forces; the drops remain in equilibrium, however, because
the repulsion from the left and right neighbors balances.

Fig. 16 Statistics of the nearest-neighbor and second-nearest-neighbor
distributions in the QI+STR system at long times. The probability distribution
of (a) the normalized minimum drop-to-drop distance l1/d and (b) the ratio
l2/l1 of the second-to-first minimum distance for the area fraction fA = 0.05
(red solid line), fA = 0.15 (blue dashed), and fA = 0.3 (green dotted) at time
_gt = 4500.
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chains are averaged out due to large chain-to-chain fluctuations.
This averaging effect is weaker at low and high area fractions,
because the chains are either uncompressed or maximally
compressed.

4.6 Uncompressed chains grow by end-to-end merging, and
compressed chains are produced via zipping

An examination of the results of the direct FD/FT and QI+STR
simulations indicates that at low area fractions (see ESI,†
Movies M1 and M3) annealing of the chain microstructure occurs
primarily by merging of chain ends. This end-to-end connection
process, illustrated in Fig. 11, does not produce chains with a
reduced drop spacing (compared to lst), i.e., chains remain
uncompressed.

At higher area fractions (see ESI,† Movies M2 and M4) chain
merging events occur mostly via a zipping process, in which
two approximately parallel chains merge into a single chain
with a smaller drop spacing. As depicted in Fig. 12, the original
chains and the resulting chain usually form a y-shaped defect in
the chain microstructure. The defect propagates when the drops
from the two original chains are incorporated into the resulting
chain either successively (one by one) or in groups of several.

Absorption in groups is found more frequently in the direct
FD/FT simulations than in the QI+STR model (see ESI,† Movies
M2 and M4). The existence of some differences in fine features
of the zipping process in the direct and QI+STR simulations is
expected because details of near-field effects are not included
in the QI+STR model.

The role of quadrupolar interactions and swapping-trajectory
repulsion in chain zipping. Fig. 17 explains the hydrodynamic
mechanism that drives chain zipping. Two important factors are
here at play: the geometry of the superposition of the quad-
rupolar flow fields produced by the drops in the chain, and the
anisotropy of the swapping-trajectory repulsion. The superposition
flow initially aligns a new drop with the gap between two drops in
a chain, and then drives the drop into the gap. The anisotropic
swapping-trajectory repulsion does not hinder the particle
incorporation process because this hydrodynamic force acts

only in the flow direction x. The swapping-trajectory repulsion,
however, contributes to the zipping process by redistributing
drops in the chain and maintaining gaps between them.

We note that relaxation of density fluctuations in a drop
chain is diffusive, similar to the relaxation of a fully overdamped
spring-bead chain. This behavior is in contrast to the wave dynamics
observed in chains of drops driven by confined Poiseuille flow.40,42

In Poiseuille flow, the direction of the wave propagation is deter-
mined by the orientation of the pressure gradient; contrary to this
behavior, the fore-aft symmetry of a sheared drop monolayer results
in diffusive chain-relaxation processes.

A sequence of zipping events depends on the distribution of
defects in the chain structure formed at the earlier stages of the
system evolution. Thus, zipping produces a variety of compressed
chains with different drop spacing. The zipping process terminates
when most of the defects are annealed and the drops are arranged
into a set of parallel percolating chains. At high area fractions,
drop incorporation into a chain also terminates when a chain
becomes closely spaced. This results in increased formation of
laterally oriented chain defects, in which unabsorbed particles are
hydrodynamically bound to a chain side (as illustrated in Fig. 3(c)).

We note that a soft isotropic repulsion force of the range
approximately equal to the range of the swapping trajectory
repulsion would significantly change the system dynamics by
preventing chain zipping. As a result, at high area fractions
chain restructuring would occur primarily by chain reconnection. In
such a hypothetical system (see ESI,† Movie M8), an approximately
hexagonal microstructure develops at long times, with a large
number of defects.

5 Conclusions

Our study provides a detailed analysis of hydrodynamic
mechanisms that govern the formation and subsequent evolution
of self-organized chain-like structures in flow-driven drop mono-
layers in a narrow-gap Couette device. We explicitly demonstrate
that experimentally observed spontaneous formation of flow-aligned
chains of drops results from hydrodynamic interactions associated
with Hele-Shaw quadrupolar scattered-flow patterns produced by
individual drops, as predicted in our earlier study.10 We also
quantify the role of damped swapping-trajectory effect, which gives
rise to swapping-trajectory repulsion that controls drop spacing.

We have developed a quasi-2D QI+STR theoretical model for
description of the dynamics of a drop monolayer. The model
combines evaluation of quadrupolar hydrodynamic interactions
with a quasistatic approximation of the swapping-trajectory
repulsion between deformable drops. The proposed approach
provides accurate quantitative description of drop dynamics at
low area fractions and semi-quantitative results at high area
fractions. We also show that chains tend to have uniform
spacing but this spacing varies from chain to chain because
the swapping-trajectory hydrodynamic repulsion allows chains
to be compressed as seen in our FD/FT and QI+STR simulations.

The QI+STR model is simple and easy to implement numerically
for large multiparticle systems. It is particularly useful for exploring

Fig. 17 Incorporation of a new particle into a chain. The combined
quadrupolar flow produced by the drops in the chain first positions the
absorbed drop above a gap between chain particles and then pulls the
particle into the chain. The swapping-trajectory repulsion acts only in
the flow direction (along the chain); therefore, it maintains gaps between
drops but does not hinder the absorption process.
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long-time evolution, because of prohibitive numerical cost of direct
FD/FT simulations in the long-time regime. In our present study,
the parameters of the model were determined from benchmark FD/
FT direct simulations of a hydrodynamically coupled drop pair. A
similar methodology can also be applied for other systems, with
different capillary numbers, wall separations, and for different kinds
of deformable particles (including surfactant-covered drops and
non-Newtonian drops in a Newtonian fluid). The model can
also be used to examine the role of stable pair separation for an
interacting drop pair.

Based on both FD/FT and QI+STR simulations, we observe
that at low area fractions drop spacing in all chains is approximately
the same and equals the stable pair separation lst. In contrast, at
higher area fractions there is a significant spacing variation from
chain to chain. This behavior can been explained using concepts of
uncompressed and compressed chains. Equilibrated chains with
free ends are uncompressed and have the spacing lst; percolating
chains or chains with ends anchored at microstructural defects are
usually compressed and have smaller spacing. The compressed
chains are usually formed by chain zipping, and uncompressed
ones by end-to-end merging.

We note that, while drop coalescence is not incorporated in
our model, the identified factors that control drop spacing are
relevant for systems of coalescing drops. Most dramatically the
coalescence occurs in the transient process in which drops in
already formed chains merge into elongated fluid strings.5,45

Our study yields useful insights into the behavior of such
systems, by describing mechanisms of the initial drop ordering
and the subsequent evolution of drop spacing before the
coalescence into strings takes place.

The hydrodynamic mechanisms and structural relaxation
processes analyzed in this study for a shear-driven drop mono-
layer are likely to be also relevant for other flow-driven systems of
deformable particles under confinement. For example, related
hydrodynamic phenomena have recently been discussed for a
shear-driven red blood cell (RBC) monolayer.13 Continuous and
fragmented particle chains with different spacing have been
observed for RBCs in a capillary,79 and for drops in inertial
microfluidic systems.2,23 Spacing variation in such chains and a
threshold for chain fragmentation can be analyzed not only in terms
of the pairwise stationary separation lst but also chain compression.

Spontaneous emergence of chain-like structures also occurs
in shear-driven suspensions of rigid spheres dispersed in non-
Newtonian fluids,80–84 especially under confinement.83 We surmise
that flow fields of a similar symmetry to the ones considered herein
are responsible for particle chaining in such systems, with nonlinear
suspending fluid rheology having a role analogous to drop deforma-
tion. In particular, nonlinear second-order perturbation produces
quadrupolar scattered flow pattern around spherical particles, due
to coupling properties of spherical harmonics and the symmetry of
the imposed shear flow. Moreover, since swapping trajectories do
not require deformation, and particles in non-Newtonian fluids are
self-centering, rigid spheres in confined non-Newtonian fluids are
subject to the swapping-trajectory repulsion.

Our findings, therefore, are likely to have broad implications
for flow-driven microstructure formation in complex media.

The theoretical insights and the QI+STR simulation framework
developed in our study are relevant for a variety of flow-driven
systems where quadrupolar backflow patterns organize particles
into chains, and anisotropic flow-oriented particle repulsion
affects particle spacing.
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Appendix A: evaluation of parameters
of the QI and QI+STR models

In this Appendix we evaluate the quadrupolar moment Q and
the parameters of the swapping-trajectory repulsion defined by
eqn (20) and (21) for the benchmark system introduced in
Section 3.4. The parameters are determined from an analysis of
the time evolution of a periodic system with two drops in a unit
cell. Since the direct FD/FT simulations require discretization
of the entire fluid domain, the size of the unit cell is limited by
the numerical cost. Thus, the parameter-matching procedure
was performed in a relatively small unit cell with dimensions
23.04d � 3.84d in the flow and vorticity directions, respectively.

In such a small cell, the particle interactions with their
images cannot be neglected. Therefore, fitting of the model
parameters was performed in QI and QI+STR systems with the
same periodicity as the direct-simulation unit cell. The periodic
quadrupolar interactions were evaluated using Ewald-summation
techniques, and the swapping-trajectory interactions by direct
summation in real space.

Appendix A.1: evaluation of the quadrupolar moment

The quadrupolar moment Q was determined from an analysis of
the drop velocity for large drop separations, i.e., in the regime
where the quadrupolar interactions dominate the system behavior.
In the direct simulations, the velocity was obtained from a single
long simulation run for a pair of drops 1, 2 aligned in the flow
direction, i.e., a pair with the relative drop position q12 = x12êx in
the flow-vorticity plane. The initial drop separation was x12/d = 4,
and the drops were placed in the midplane of the channel.

Fig. 18 presents the normalized longitudinal velocity

%U1x = ( _gd)�1U1x (24)

of drop 1 along the trajectory. The direct numerical simulations
are compared with the quadrupolar velocity (8) evaluated for
the same system. The value of the quadrupolar moment is
obtained from the relation

Q = %U1x/vper
qx , x12/d c 1, (25)

where vper
qx is the normalized quadrupolar hydrodynamic-inter-

action field (9) summed over the periodic images. A good quantita-
tive fit is obtained for the quadrupolar moment Q = 0.09 � 0.01
(see the inset of Fig. 18). In our QI and QI+STR models we use
Q = 0.096, for which the value of the direct simulations and QI
results agree over a wider range of drop separations.
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A relatively large numerical uncertainty of the quadrupolar
moment Q stems from the fact that the relative drop velocity at
large distances is much smaller than a typical fluid velocity _gd.
Hence, a significant numerical noise.

Appendix A.2: evaluation of parameters of the model

The results depicted in Fig. 18 show that for x12/d t 2.6, the
drop velocity significantly differs from the quadrupolar far-field
result. The drop velocity %U reaches a maximal magnitude at
x12/d E 2.4 and decreases to zero at

x12/d E 2.17, (26)

which is a stable stationary separation for a pair of drops in the
periodic cell. In contrast, the quadrupolar field (9) is monotonic
and smaller than zero for all drop separations along the flow
direction x.

The behavior of the drop velocity on the approaching-drop
trajectory shown in Fig. 18 can be quantitatively described using
a combination of the quadrupolar interactions and swapping-
trajectory repulsion defined in eqn (20) and (21). The quantitative
fit of the model equations to the direct simulation results is
represented in Fig. 18 by the dashed line.

The trajectory considered in Fig. 18 does not continue
beyond the stationary separation (26). To represent the drop
behavior for smaller values of x12/d, we analyze several drop
trajectories with the initial conditions in the range 1 o x12/d o 1.5.
In all simulation runs the drops are initially spherical and
placed in the midplane of the channel. The trajectories, shown
in Fig. 19, indicate that drops with smaller initial separations
have larger relative velocities, which stems from a larger transverse
drop displacement at the beginning of the trajectory.

To approximate drop evolution using the quasistatic swapping-
trajectory model, we choose the fitting parameter values that
provide an overall qualitative agreement with the direct-
simulation trajectories (see Fig. 19). A full quantitative agree-
ment cannot be obtained within the quasi-2D QI+STR model
because of limitations inherent in the quasistatic-balance
assumption for the transverse drift (15).

To determine the parameters of the QI+STR model, we
applied an iterative fitting procedure in which the amplitude
B and the exponential-decay parameter k were adjusted to
match the drop velocity for x12/d at and above the stationary
separation (26), and the shift parameters b and r0 were used to
control the velocity for smaller drop separations. The parameter
values employed in our simulations are listed in Table 1.
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