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Ensemble averaging combined with multiple scattering ideas is applied to the Stokes 
flow over a stochastic rough surface. The surface roughness is modelled by compact 
protrusions on an underlying smooth surface. It is established that the effect of the 
roughness on the flow far from the boundary may be represented by replacing the no- 
slip condition on the exact boundary by a partial slip condition on the smooth surface. 
An approximate analysis is presented for a sparse distribution of arbitrarily shaped 
protrusions and explicit numerical results are given for hemispheres. Analogous 
conclusions for the two-dimensional case are obtained. It is shown that in certain 
cases a traction force develops on the surface at an angle with the direction of the 
flow. 

1. Introduction 
Viscous flow over a complex boundary is a practical but difficult problem that can 

in general only be dealt with numerically. When the scale of interest is large compared 
with the scale of the surface features, however, it may be possible to account for 
the latter by means of an effective boundary condition imposed on a smooth surface 
approximating the actual one. In this case we may refer to the boundary as rough. 
One may distinguish two limit cases of rough surfaces: those of the ‘wavy’ and those 
of the ‘bumpy’ type. In the first case both the scale of surface irregularities and their 
slope are small. For bumpy surfaces, on the other hand, the surface slope remains 
finite irrespective of the smallness of the irregularities. In this paper we consider no- 
slip surfaces of the second type in which the roughness consists of bosses randomly 
distributed over a smooth surface. We assume that the bosses are sufficiently small 
to remain immersed in a region of fluid where the Stokes equations apply. Thus 
we explicitly rule out the much more difficult problem of protuberances significantly 
extending into the viscous sublayer or the turbulent boundary layer. 

The general problem studied here has been considered before, especially for wavy 
surfaces. Nye’s (1969, 1970) investigation was motivated by the mechanics of glacier 
sliding, while Richardson (1973) was concerned with the origin of the no-slip condition 
normally applied at solid boundaries. Surface roughness as a mechanism for inducing 
slip was investigated by Hocking (1976) and others (see Dussan V. 1979; Haley & 
Miksis 1991) in connection with the stress singularity associated with the motion of 
a contact line along a solid wall. The most recent studies on the subject are due to 
Miksis & Davis (1994), who allowed for the presence of a film of a different fluid 
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coating the surface, and to Tuck & Kouzoubov (1995) who considered finite-slope 
and finite-Reynolds-number effects. 

All of the previous studies are for wavy surfaces. As far as we know, bumpy 
surfaces of the type studied here have only been considered by Jansons in connection 
with the moving contact line problem (1985, 1986), the flow of a rarefied gas (1994), 
and slow viscous flow (1988). The last study addresses the same problem as considered 
here with the difference that free-slip ‘microscopic’ boundary conditions are imposed 
on the rough surface. Jansons’s reliance on the method of images would prevent 
his technique from working in the no-slip case studied here. Furthermore, contrary 
to ours, his approach requires a locally uniform roughness distribution. As will be 
shown below, non-uniform distributions can give rise to some very interesting effects. 

The approach that we use in this paper is suggested by the theory of multiple 
scattering (see e.g. Foldy 1945; Biot 1968; Ogilvy 1987, 1991; Twersky 1957, 1983) 
and we have recently applied it to the related problem of the Laplace equation in the 
presence of rough boundaries (Sarkar & Prosperetti 1995). It is based on the use of 
a local Green’s function and ensemble averaging that can be used essentially in the 
same form for both two- and three-dimensional bosses. 

In general, we find that when the length scale of interest is much larger than the 
characteristic size of the bosses, an effective boundary condition can be formulated 
which is however non-local ($4). This general expression can be given a local form 
with the additional assumption that the bosses be ‘sparse’, i.e. widely separated on 
average ($5). One can then give exact results for the case of identical hemispherical 
bosses ($6). Section 7 deals with the two-dimensional problem. An application of the 
results to Stokes flow past a rough sphere and to Poiseuille flow in a rough tube ($8) 
serves to elucidate their physical significance. In $8 we also consider an example of a 
new phenomenon arising in the presence of a spatially non-uniform boss distribution. 
We show that a traction can develop on an oscillating rough plate in the direction 
normal to that of the oscillations. This result also implies that such a plate would 
not fall vertically in a fluid, but would acquire a horizontal velocity component in its 
plane. 

In conclusion we may cite a few other contexts in which partial slip boundary 
conditions arise, namely the flow next to the surface of a porous material (Beavers & 
Joseph 1967; Taylor 1971; Richardson 1971; Saffman 1971; Nield 1983), the effect of 
a wall on the flow of a suspension (Brunn 1981), and molecular diffusion along solid 
surfaces (Davis, Kezirian & Brenner 1994). 

2. Formulation 
We consider the viscous flow adjacent to a rough surface S, consisting of N bosses 

with a characteristic linear dimension a randomly arranged over a smooth surface S,. 
The surface S, is rough in the sense that the smallest radius of curvature of S,, R,, 
is much larger than a (figure 1). For simplicity we take the bosses to have identical 
shape and orientation, a restriction that can be easily lifted as noted below in 93. A 
similar construction holds in the two-dimensional case in which S, is a smooth line 
and the bosses are infinitely long ridges (see $7). On the rough surface S, the velocity 
u satisfies the no-slip condition 

and our objective is to replace this no-slip condition valid on S, by an approximate 
boundary condition on the underlying smooth surface S,. 

u = 0, (2.1) 



Eflective boundary conditions for Stokes $ow ouer a rough surface 225 

FIGURE 1. Model of an embossed surface 

We assume that the mean shear near the surface S, is small enough that the Stokes 
flow equations 

are valid at least up to distances G .> a from the surface S,. In the language of singular 
perturbations, the solution of (2.2) is the inner solution to be made unique by the 
condition of matching with an outer solution at a distance of the order of G from the 
boundary. In the analysis that follows, we shall need a separation of scales such that 
a 4 G 4 R,. 

v p  = pv2u, v *  u = 0, (2.2) 

We start by decomposing the solution (p ,u)  as 
N N 

u = u o + C u a ,  p = po+Cqa. 
"=I "=I 

This decomposition is made unique by specifying that (po ,  UO) satisfy the Stokes 
equations subject to the no-slip condition on the smooth surface S, and to the matching 
condition. The fields (qa,ua) account for the effect of the ath boss. Specifically, they 
vanish far from the ath boss and ua vanishes on the entire smooth surface S, 
surrounding the ath boss. On the surface B" of the ath boss, on the other hand, ua is 
such that (2.1) is satisfied. To express this requirement it is convenient to define 

so that, for every a = 1, 2, ..., N ,  

= u a + w a ,  p = q a + r a .  (2.5) 

On B" then ua satisfies 
u" = - w " *  

In the literature on multiple scattering the fields u" and w" are often referred to as 
the 'scattered' and 'incident' fields respectively. 

It should be explicitly noted that each u" is well defined also inside the other bosses 
and vanishes on their bases. So as to give a meaning to the decompositions (2.3) 
everywhere in the domain bounded by the smooth surface S,, we define u", qa to be 
zero inside the ath boss. 

The exact fluid dynamic fields u, p are necessarily finite even in the 'thermodynamic' 
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FIGURE 2. Definition of quantities pertaining to an individual boss. 

limit in which the number of bosses becomes very large. This consideration is not 
sufficient to ensure convergence of the summations in (2.3) as the specification of the 
problem satisfied by v" ,  q" involves differential operators that may not commute with 
the infinite sums. In spite of this, we do not encounter convergence difficulties for 
two reasons. Firstly, we take the limit on the digerential equations satisfied by the 
mean fields, rather than on the solutions of these equations. Secondly, we explicitly 
calculate only the lowest-order correction in the concentration. Were we to attempt 
a solution at the next order, we would very likely encounter divergencies of the type 
well known in suspension mechanics (see e.g. Hinch 1977). The origin of this difficulty 
- the attempt to use one- or two-particle solutions to reconstruct the flow fields in 
the entire suspension - and a technique to overcome it - renormalization - would 
probably be applicable to the present problem as well. Further comments on this 
point can be found in a paper by Rubinstein & Keller (1989) where a decomposition 
similar to (2.3) is also used. 

3. Averaging 
Even though the previous problem can be solved exactly by numerical means in 

some cases, for many applications it is neither useful nor desirable to deal with such 
a vast amount of information. In these situations, suitable average quantities are 
of greater practical interest and it is the calculation of such quantities that is our 
concern here. 

We make use of the method of ensemble averaging and consider a large number of 
rough surfaces, all obtained from S, by different arrangements of the N bosses. Each 
arrangement is termed a configuration and denoted by V N  = ( Y  ', Y 2 ,  . . . Y N ) ,  where 
Y" is the position of a reference point of the base o" of the ath boss (e.g. the centre of 
symmetry) referred to an arbitrary system of curvilinear coordinates on S, (figure 2). 
A particular configuration occurs in the ensemble with a probability P ( V N )  = P ( N ) .  
Since the bosses are indistinguishable, it is convenient to use the normalization (see 
e.g. Batchelor 1972) 

N !  = dVNP(N) = d2Y' d2Y 2 . . .  d Y P ( N ) ,  (3.1) s s s P N  
where an abbreviated notation has been introduced to indicate integration over all 
possible positions of the bosses over S,. The restriction to identical bosses can 
be removed by enlarging the probability space over which P is defined to include 
additional parameters characterizing the bosses such as size and orientation. 

The reduced probability distribution in which the position of K bosses is prescribed 
is obtained from P ( N )  by integration: 

1 dVN-K P ( N )  , 
1 

P ( K )  = 
( N  - K ) !  
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and satisfies the normalization condition 

The conditional probability P ( N  - K IK) for the arrangement VNPK of N - K bosses, 
given that K bosses have the arrangement V K ,  is defined by 

P ( N - K I K ) P ( K )  = P ( N ) .  (3.4) 

From (3.1) and (3.3) one finds the normalization condition 

/dV"-KP(N-KIK) = ( N - K ) ! .  (3.5) 

We can now define the unconditional average of the field u by 

where the notation u(xlN) stresses the dependence of the exact field not only on 
the point x, but also on the configuration of the N bosses. In view of the Stokes 
flow assumption, near the boundary, time dependence can only be parametric and 
its explicit indication is unnecessary. We introduce conditional averages in which the 
position of K bosses is held fixed by writing 

with a similar definition for the conditional averages of other quantities of interest. 

Upon substitution of the decomposition (2.3) of u into the definition (3.6) one finds 
We now average the problem stated in $2 over the ensemble described by P ( N ) .  

N . ,  

(u) (x )  = uo + $ dVNP(N)u". 
Ci=l 

In computing the integral it should be kept in mind that ua has been defined to be 
zero when x is inside the boss a. Since the bosses are indistinguishable, all the N 
terms in the sum give the same contribution equal to that of, say, boss a, with a 
arbitrary, so that 

= uo + Jd2yaP(a)(ua)l(xla), 

where the definition (3.7) has been used: 

(3.9) 

(3.10) 

The problem satisfied by (ua)l is readily obtained from the exact formulation given 
in $2 by averaging according to (3.10). In particular, it is readily shown that (u ')~,  (qa)l 
satisfy the Stokes equations (2.2) everywhere except inside the ath boss. Furthermore, 
the ratio of (ua)l  to the incident velocity vanishes at infinity and ( D ~ ) ~  vanishes on S, 
away from the clth boss. On B" it satisfies 

(U")l = - ( W " ) 1 .  (3.11) 
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In attempting to render the boundary condition (3.11) explicit one encounters the 
difficulty inherent in all averaging approaches, namely that the mathematical problem 
for the averaged quantities is not closed. Indeed, upon calculating (w')l according to 
the definition (3.7) with K = 1, it is readily found that 

(w")1(xla) = 110 + p y p  P(Pla) (u%(xlaB), (3.12) 

where now configurations such that x is inside another boss B contribute nothing by 
definition of d and (up) ,  is given by (3.7) with K = 2. 

The closure issue will be addressed in the case of a sparse distribution of bosses in 
$4. We first derive a formal expression for the effective boundary condition valid for 
arbitrary boss density. 

4. The effective boundary condition 
We now show that it is possible to derive a formal expression for the effective 

boundary condition on S, without solving explicitly the problem posed in the previous 
section. For this purpose, we use a suitable Green's function representation of the 
velocity contribution due to the ath boss. Specifically, let Gs(x,y) be the Green's 
function for the Stokes problem vanishing at infinity and also on the smooth surface 
S,, and let T S  be the corresponding stress. Then, since z)' vanishes on S, away from 
the clth boss, Green's identity is simply (see e.g. Pozrikidis 1992, p. 27), 

(q) ' (x I4 = / dB," (gq)l(Yla)G;Cv,x) - dB,* (v;)l(Yla) T;k(Y,x)nk' (4.1) 
B" s,. 

where the integration is over the boss surface B". Here in the first integral (single 
layer) 9" is the traction force at the boundary associated with the velocity field 2r" and 
given by 

g' = -q"n + z" n ( 4 4  
where 7" is the Newtonian viscous stress tensor and n the unit normal into the fluid 
(figure 2). 

Similar to our approach for Laplace's equation (Sarkar & Prosperetti 1995)' we 
note that the 'incident' field ( w ' ) ~  is a regular solution of the Stokes equations in the 
closed domain bounded by the surface B' of the boss and the underlying portion 
cr' of S, (see figure 2 for a definition of these symbols). Green's identity written at 
the same point x appearing in (4.1) for the closed surface cr" U B" therefore reduces 
to 

(4.3) 

where h" is the traction force at the boundary due to the velocity field w". The 
left-hand side vanishes because x is outside the surface cr' Y B " .  The first in- 
tegral does not contain a contribution from cr" because G vanishes by con- 
struction for y on s,, and similarly for the second integral since w" = 0 on S, 
from the definition (2.4) and the conditions satisfied by uo and the up. Equa- 
tion (4.3) is of course just a special case of Lorentz's reciprocal theorem (Lorentz 
1896). 

By adding (4.3) to (4.1)' the two integrals containing T S  cancel due to the condition 
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(3.1 l), and we find 

The first term is the Green's function for a no-slip plane tangent to S, at y". The 
term Fij accounts for the deviation of S, from this tangent plane. Since the radius of 
curvature R, of S, has been assumed to be large compared with the scale of the bosses, 
one expects that lFijl d IG$I up to distances from the boss smaller than R,, but still 
much greater than a, and in particular in the matching region. The expression for the 
Green's function GP for a plane wall was essentially first obtained by Lorentz (1896). 
An equivalent expression was given by Blake (1971; see also Blake & Chwang 1974). 
Later Hasimoto & Sano (1980) provided an elegant form which has the advantage of 
being formally valid also in the two-dimensional case (see $7). This form is 

2 
I - Y ,  

P 
where G is the free-space Green's function (Stokeslet) given by 

G;(Y, X )  = Gij(y, x )  - Gij(y, x') f 2yliJyjGil(Y, x + -iJyjni(Y, x ' ) ,  (4-6) 

and U ( y , x )  is the corresponding pressure field (formally equal to a potential dipole), 
namely 

In these relations the index 1 refers to the normal direction into the fluid, X I  is the 
image of x in the plane, the plus sign is for the normal direction j = 1 and the 
minus sign for j = 2,3. (By y" we indicate the position vector of the centre of cr" 
in three-dimensional space; the notation Y" used earlier refers to the position of the 
same point expressed in terms of curvilinear coordinates on the surface S,.) 

Equation (4.4) can be simplified considerably if we take the point x in an interme- 
diate range far from the boss on the boss scale, while still close to S, with respect 
to the surface radius of curvature, i.e. a d  Ix - y"I R,. In the language of singular 
perturbations, this would be the 'matching region', and it is at this point that we 
explicitly use the postulated separation of scales between the bosses' size and the 
'macroscopic' dimensions of S,. As noted before, in this region the Green's function 
correction F is small and can be neglected. Hence, upon using the symmetry property 
Gij (y ,x )  = Gji(x,y) ,  an expansion of GP in Taylor series in y centred at y" gives, for 
i = 2, 3 (Blake & Chwang 1974; Pozrikidis 1992, p. 86), 

where 

(4.10) 
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The corresponding result for i = 1 is 
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This form shows that GTl is of the same order as the terms that have been dropped in 
the expression for G; with i = 2, 3 and can therefore be disregarded. It can actually 
be shown that this term would contribute zero to the final result (4.18). 

Upon substituting (4.9) into the integral representation (4.4) we then find 

where 

(4.12) 

(4.13) 

Y " ( ( w " ) l )  = 'J' dB,*N*(y -Y" ) ($ ) l ( y la ) .  (4.14) 

Here the subscript 11 denotes the component parallel to the tangent plane to the 
smooth surface S, at y N  and N is the unit normal to S, oriented into the fluid. Since 
in (4.12) the summation is only over the components parallel to S,, @" and Y" have 
been defined so that @: = 0, Yr = 0. Furthermore note that, since (g")l and ( F ) l  

are the tractions corresponding to (u")1 and (wa)1, and are therefore related to these 
quantities by linear relations, @, Y are linear functionals of their arguments. It may 
also be noted that, from (2.5), 

@"+Y'" = ' 1  dB,"N.(y-y")(f,,)l(yla), (4.15) 

where f" = g" + k" is the traction force on the ath boss due to the total flow velocity 
u = u" + w". This relation exhibits the direct relation between the perturbation velocity 
due to the ath boss and the torque acting on the boss. 

The result (4.12) may now be inserted into the expression (3.9) for the average field 
to find 

B" 

p B" 

(4.16) 

This relation shows that, at some distance from the rough surface, the effect of the 
bosses is represented by a suitable distribution of doublets over the surface S,. We 
now take an 'inner limit' of (4.16) by letting the field point x approach S,  to find (see 
e.g. Stakgold 1979, p. 513) 

where we have used the fact that uo vanishes on the plane and dropped the superscript 
a in the first term as @ and Y here are to be evaluated for the boss centred at x E S,. 
In (4.17) the integral is understood as a principal value and vanishes identically if S, 
is plane. If the radius of curvature is large, as we have already assumed in dropping 
the correction Fi.j to the plane Green's function in ( 4 4 ,  its contribution will be small 
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and (4.17) gives the effective boundary condition 

(ull)(x) = -W)P + w , x E s s  7 (4.18) 

where the subscript / I  on u is a consequence of the fact that, by definition, @ and Y 
only have components in the tangent plane. 

According to this result, the average velocity field evidently does not vanish on Ss in 
general. This result may be interpreted by noting that, from (4.15), (-@;-Yf, @;+Yy2a) 
are the components in the plane of the torque acting on the boss. The action of 
the average of this torque is balanced by a vortex sheet that produces a velocity 
discontinuity. 

We proceed similarly for the normal component of ( u " ) ~  for which only the 
expression (4.1 1) is needed. After substitution into (3.9), standard techniques enable 
one to evaluate the inner limit for x approaching the surface with the result 

(u1)1(x) = 0, x E s s ,  (4.19) 

where u1 denotes the component of u normal to the smooth surface S,. The 
contribution given by a regularized integral similar to that in (4.17) has been neglected 
under the same hypotheses as before. 

5. The first-order problem 
We now obtain an explicit expression for the effective boundary condition (4.18) in 

the sparse limit, i.e. to first order in the area fraction covered by the bosses. 
We start by noting that, since wa accounts for the effect of all the other bosses 

on the one located at ya, ( w " ) ~  is slowly varying near y" so that, for y on the boss 
surface B", we may write 

(w")1(yIa) = (w")1(y"la) + [ (y  - Y")  - v I ( w " ) l ( Y " l ~ )  + . . . . (5.1) 

However, since bosses cannot overlap, ( w " ) ~  vanishes by definition on the base of 
the clth boss so that (~")~(y"la) = 0. For the same reason, only the gradient in the 
normal direction, N - V(w"),(y"la),  is non-zero and furthermore, since V - wa = 0, 
8(wT)l /8yl  = 0 at y". As a consequence, upon retaining only the terms shown in 
(5.1), on B" we find the following approximate expression for the traction ha due to 
the velocity field w " :  

( q l ( Y l a )  = - ( ~ a ) l ( Y a l ~ ) n l l  + P@ ' N )  ( N  * V)(w;)l(Y"la), (5.2) 

where nil = N x (n x N )  is the component of n parallel to the tangent plane and the 
first term is the pressure disturbance caused by the other bosses (see (2.4)). Upon 
substitution into the definition (4.14) of Y,  since 

~@dB:"*(Y-YX)1nll = 0 ,  (5.3) 

the pressure term contributes nothing and 

YE((wa)l)  = I/ ( N  * V)(w;)I(Y*la) , (5.4) 

where the approximation is solely due to the use of (5.1) and the constant I/, given 
by 

r 
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is readily seen to be the (common) volume of the bosses. If L denotes the characteristic 
length scale for the variation of (w;)~ ,  the relative error in (5.4) is of the order of 

The previous method cannot be used for the calculation of @" because ( D " ) ~  is 
not slowly varying near B". Rather, the calculation of this quantity is reduced to 
a canonical problem as follows. Upon using the approximation (5.1), the condition 
(3.11) satisfied by (u")1 on B" may be written 

( a m 2 .  

This relation shows that, on the surface of the boss, to this approximation the velocity 
field induced by the other bosses is a simple shear flow. Since ( D " ) ~  satisfies a linear 
problem that is homogeneous except for this condition, it is evident that it must be 
expressible in the form 

( m x l 4  = v( * ) (X -Y" )  [ ( N  * V)(w;)l(Y"la)] + v(3)(x-Y")  [ ( N  - V)(w;)l(Y"l4] > (5.7) 

where the two vectors Y(') ,  i = 2,3, are the velocity fields that solve the Stokes 
equations subject to the boundary condition 

V( ' ) (x )  = -(x N )  Bi (5.8) 

on the surface of the boss centred at the origin and vanish at infinity and on the plane 
away from the boss. Here &,& is a pair of orthogonal unit vectors in the tangent 
plane. Clearly, the fields Y(') are only dependent on the shape of the boss. 

With the expression (5.7) for ( u " ) ~ ,  the quantity @" defined in (4.13) may be written 
in the form 

V/-'@" = k(2) [ ( N  * v)(w;)l(y"la)] + [ ( N  * V)(w;)1(y"la)] , (5.9) 

where 

(5.10) 

is proportional to the integral over the surface of the boss centred at the origin of the 
surface traction Z(') associated with the velocity field Y( i ) .  Recall that V is the volume 
of the bosses. Clearly, ( - k t ) ,  k t ) )  are the components in the plane of the dimensionless 
torque on the boss exerted by the flow Y(i ) .  

The final result may be expressed in a more compact form upon introducing the 
two-dimensional tensor 

x.. 11 - - k!", I (5.11) 
as, upon substitution of (5.4), (5.9) into the form (4.18) of the effective boundary 
condition, we then find 

( q ) ( x )  = - P ( x )  V ( 4  + =m * [ ( N  ' v)(w,l) l (xlx)]  1 (5.12) 

where 3 is the identity 2-tensor. Upon recognizing that 

P ( x ) V  = C(x) (5.13) 

is the volume occupied by the bosses per unit surface of S,, we may also write 

(.ll)(x) = -C(x) (4 + X )  * [ ( N  * v)(Wii) l (xl4]  . (5.14) 

This is still an incomplete result as the field ( w , , ) ~  is not known. Since, however, this 
field appears here multiplied by a quantity of the first order in the boss concentration, 
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it is consistent to use for it an approximation of zero-order accuracy. The classic 
approximation introduced by Foldy (1945) consists in setting 

(WI , ) l (X IX )  21 (UIl)(X), (5.15) 

so that the effective boundary condition (5.14) finally becomes 

(UIl)(X) = -W) (3 + X )  [ ( N  * V)(UI,)(X)] * (5.16) 

The original no-slip boundary condition is thus transformed to a mixed condition 
for the tangential velocity. A discussion of this result will be given in $8. Its validity 
hinges on the assumptions that the boss size is much smaller than the macroscopic 
length scales, that the flow in the vicinity of the bosses is adequately described by the 
Stokes equations, and that the bosses are sparsely distributed on average. 

In conclusion, we prove that the matrix X defined in (5.11) is symmetric. For this 
purpose note that, by (5.8), we have 

Since, by definition, Vcj )  vanishes everywhere other than on the boss B,  the integral 
can be extended to the entire boundary of the problem. The reciprocal theorem for 
Stokes flow can then be used to replace the integrand in (5.17) by Z"' * V("(y)  to 
prove the statement. 

6. Hemispherical bosses 
The shape of the bosses affects the effective boundary condition through the tensor 

X whose evaluation requires the calculation of the Stokes fields Vc2),  V(3)  satisfying 
(5.8). In general such a solution has to be determined numerically by one of the 
several effective techniques available (Weinbaum, Ganatos & Yan 1990; Pozrikidis 
1992; Kim & Karrila 1991). For the simple case of hemispherical bosses, however, 
a semi-analytic solution is possible (Price 1985; the earlier work of Hyman 1972 is 
incorrect). 

In view of the high symmetry of the boss shape, it is easy to convince oneself that 
the tensor X is isotropic for this case, X = khij. The constant k is given in Sarkar 
(1994): 

(sin Oa,Q - sin OQ + dry)  cos 8 sin 8d8, (6.1) 

where the functions Q and y are defined by O'Neill(1968). Performing the integration 
numerically, one obtains 

The effective boundary condition (5.16) for a rough surface with sparse hemispherical 
bosses is then 

k 31 x 0.2104 = 0.3156. (6.2) 

(Ull)(X) = -1.3156 W ) ( N  - V(U,I))(X), (6.3) 
with the usual zero normal velocity condition. 
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7. The two-dimensional case 
The preceding analysis can also be applied to the corresponding two-dimensional 

problem, i.e. a surface with a random distribution of parallel or nearly parallel 'ridges'. 
The results found previously hold also in this case with the only difference that the 

free-space Green's function and the corresponding stresses are given by 
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After substitution of these expressions into (4.6) the analysis proceeds as before and 
one finds, for the tangential velocity, an effective boundary condition similar to (4.18), 
namely 

where 
(Ull)(X) = -P(X)[@ + y17 (7.3) 

(7.4) 

In the sparse limit, to first order, we again find 

!Pa = [ ( N  - V) (wt>(Y"l4] 7 (7.7) 
where A is the cross-sectional area of the ridges, assumed to be all equal, and 22 a 
unit vector orthogonal to the normal N .  Similarly to (5.10), K is given by 

where ,Z is the traction corresponding to the solution V of the Stokes equations 
vanishing at infinity, on the plane away from the ridge, and subject, on the ridge, to 
the condition 

v = -( x . N ) & .  (7.9) 
The effective boundary condition on the tangential velocity is 

(Ull)(X) = -C(X)(l + K )  " * VI (Ul l>(4 , (7.10) 

while the normal velocity vanishes. In this case C is the boss area per unit length and 
is given by 

C(X) = P ( x ) A .  (7.11) 

8. Examples 
In order to illustrate the physical meaning of (5.16) it is now interesting to consider 

some specific examples. For simplicity we only consider bosses such that the tensor 
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X = k 9  is isotropic. We have seen in $6 that this would be the case for hemispherical 
bosses, but other axisymmetric shapes would also result in an isotropic X.  

(i) Rough sphere. Our first example is the drag on a uniformly (C = constant) rough 
sphere with radius S moving with velocity U in a fluid at rest in the Stokes regime. 
The fluid velocity has the usual form (Landau & Lifshitz 1959, section 20) 

(8.1) 
a b 
r r 

(u) = -- [n(n * U )  + U ]  + - [3n(n - U )  - U ]  . 

The constants a, b are found by imposing (5.16) and the condition of vanishing of 
the normal velocity and are 

(8.2) 
The corresponding drag is 

(8.3) 

These results differ from those for a smooth sphere of radius S simply by the 
substitution of S by 

so that the rough sphere behaves like a smooth one with a slightly bigger radius. To 
first order in C/S these results coincide with those given by Basset (1888, art. 495). 
They also are in agreement with the ‘inclusion monotonicity’ theorems on drag in 
Stokes flow (see Kim & Karrila 1991, section 2.2.4; Hill & Power 1956). 

(ii) Poiseuille $ow. As another example, consider Poiseuille flow in a uniformly rough 
tube. We readily find the following result for the mass flow rate Q caused by a 
pressure drop Ap along a tube of length 1 and radius R:  

Q = -  ‘@R4 [1-4(1+k)- R “1 N--  rcpApR4 8 p1 (8.5) 
8 PI 

This relation shows that the effect of the roughness is equivalent to a decrease of the 
tube radius from the value R that it would have were the bosses removed, to the 
smaller value 

A similar result has been found by Davis (1993) who solved the two-dimensional 
Stokes flow in a channel with a periodic roughness distribution. 

(iii) Rough plane. In situations such as the previous ones the effect of roughness is 
simply to displace into the fluid by a distance (1 + k)C the ‘effective’ boundary, on 
which the usual no-slip condition would apply. A qualitatively different phenomenon 
however is encountered when N is not isotropic or C is not uniform, as then a force 
may develop acting on the boundary in the direction orthogonal to that of the flow. 
To illustrate this point we consider the effect of a spatially non-uniform distribution 
of bosses on the flow generated by the slow oscillations of a plate in its own plane. 
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As in the previous examples, we assume X to be isotropic. Although the problem 
is time-dependent on the macroscopic length scale (v/co) ' i2 ,  where co is the angular 
frequency of the oscillations, we assume the bosses' size to be so small that inertia is 
negligible. Thus, time enters only parametrically in the local problem and it is in this 
sense that one can speak of an effective boundary condition to be imposed on the 
macroscopic flow. 

A full solution of this problem subject to the boundary condition (5.16) leads to 
coupled integral equations and is a matter of some complexity. In order to bring 
out the physical effect of interest here, it is sufficient to use a perturbation approach, 
writing 

(8.7) 
where 

(8.8) 
with x the coordinate normal to the plate, is the exact solution for a smooth plate. 
Here &2 is the unit vector in the y-direction along which the oscillations take place. To 
first order in the effect of roughness the perturbation (u') solves the Stokes equations 
subject, on the plane x = 0, to the approximate boundary condition 

(4 = uo + (u') 7 ( P )  = PO + (P ' )  , 

uo = u exp [-(iw/v)'i2x + iot] &, po = 0, 

where we have set c = (1 + k) C. Here and in the following we drop exp icot. The 
normal component of (u') vanishes on x = 0, (4.19), and (u') -+ 0 for x -+ 00. 

In order to solve this problem we seek a representation of the perturbation velocity 
in the form 

where g1 is the unit vector in the x-direction normal to the plane and A, B, 4 are 
suitable scalar potentials. From the condition of incompressibility 

(u') = A21 + V x (B2,) - V4 (8.10) 

while, from the vorticity equation (Cortelezzi & Prosperetti 1981), 
iw 

V A -  --A = 0 ,  
V 

V2B - 
iw 
-B = 0. 
V 

The effective boundary condition (8.9) leads to 

d2B d2B - + - = u  
a y 2  a z 2  

while, from the vanishing of the normal velocity, on x = 0 we have 

(8.11) 

(8.12) 

(8.13) 

(8.14) 

(8.15) 

Of particular interest is the force per unit area C, acting on the plate in the direction 
orthogonal to the plate's velocity. Its expression is 

(8.16) 
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It is clear from the structure of the problem that B can be expressed as 

where the Green's function GB vanishes for x + 00 and solves 
i o  

V 2 G ~ - - G B  = 0, 
V 

subject to 

on x = 0. In a similar way we have 

where the Green's functions GA, Gb are the solutions of 

i o  
V2GA - -GA = 0,  dGA V2G4 = __ a x  V 

vanishing at infinity and subject, on the plane x = 0, to the conditions 
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(8.17) 

(8.18) 

(8.19) 

(8.20) 

(8.21) 

(8.22) 

(8.23) 

Using the representations (8.17), (8.20), (8.21), the expression (8.16) for the cross- 
stream force density becomes 

The Green's functions are readily found by taking a Hankel transform in the 
( y ,  2)-plane, e.g. 

?;B = /I dr r Jo(kr) Gg(X, r )  , 

where r = (y2  + z2)ll2. They are 

1 
2.nk2 

G B  = -- exp (-hx), 

1 h 
exp (-kx) - - k exp (-hx) , 

i o  

' - G -  
2.nk(h-k) 

exp (-hx) , G A  = 
2nvk2(h - k )  

(8.25) 

(8.26) 

(8.27) 

(8.28) 

where h = (k2  + io/v)'l2. By using these results we find for the force per unit area 
acting on the plate in the z-direction: 
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This relation shows that a non-uniform distribution of the bosses can give rise to a 
stress in the direction orthogonal to the motion of the plate. 

As an example, consider roughnesses arranged (on average) in lines at an angle 1 
with the y-axis, e.g. 

C = Co cos [Q(y sin2 + z cos2) - y ]  , (8.30) 

where Co, Q, y are given constants. This might be a simple model of the irregularities 
resulting from machining in the direction A. Then, using polar coordinates to effect 
the integration in (8.29), one readily finds 

- 

(8.31) 

This result shows that the effect vanishes when the roughnesses are parallel (A = 0) 
or perpendicular (2 = ix) to the direction of motion, and it is a maximum when they 
are arranged at 45" with it. A similar problem has been treated by Wang for a 'wavy' 
rough surface (Wang 1978) and a finned surface (Wang 1994) with analogous results. 
His method exploited the linearity of the problem to study separately the motion of 
the plate in the directions parallel and orthogonal to the grooves or fins. Such an 
approach evidently cannot be used here where each surface irregularity is inherently 
three-dimensional. 

One may expect that a similar rough plate falling vertically in a viscous fluid would 
acquire a non-zero velocity in its own plane normal to the direction of gravity. Other 
examples of similar effects are roughness-induced secondary motion in laminar pipe 
flow and roughness-induced coupling between translation and rotation for a body in 
a flow. Roughnesses of such a shape as to give rise to a non-isotropic X tensor can 
produce these phenomena even when they are distributed uniformly. 

9. Conclusions 
We have studied a particular model of a rough surface in which the roughness 

can be approximated by bosses randomly distributed over a smooth surface S,. Our 
analysis holds under the assumption that the flow in the neighbourhood of the bosses 
is highly viscous as may happen, e.g., in lubrication or for small bosses. On the other 
hand, use of our methods and results, e.g. in turbulent flow over a rough surface, 
would be inappropriate. 

We have found that, in an ensemble-average sense, the effect of the roughness can 
be approximately represented by a partial slip boundary condition on the component 
of the velocity tangent to S,. This boundary condition, which is non-local in general, 
simplifies to a local one for widely separated bosses on a surface with a radius of 
curvature much larger than the boss size. In this case it is 

("II)(X) = -W) (X + [ ( N  * V)("I,)(X)] 3 (9.1) 

where X ,  a 2x2 symmetric tensor solely dependent on the boss shape, is defined 
by (5.11), (5.10) and 9 is the two-dimensional identity tensor. The boss density is 
measured by C, the boss volume per unit surface area. The normal velocity vanishes. 
Similar conditions are found in the two-dimensional case. 

As expected, when X is isotropic and the roughnesses are uniformly distributed, 
the physical meaning of this result is that the usual no-slip condition holds not on S, 
but on an effective surface displaced into the fluid by a suitable amount. In the case 
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of Stokes’s law for a rough sphere, considered as an example in $8, this circumstance 
has the effect of increasing the drag over that of a smooth sphere. In this case, for 
example, the meaning of our ensemble-average result is that, given a batch of rough 
spheres of nominally equal size, their drag distribution can be determined from the 
probability distribution of their roughnesses. 

As first remarked by Jansons (1988), a boundary condition such as (9.1) gives 
rise to a qualitatively different phenomenon when X is not isotropic, namely the 
direction of slip need not coincide with the direction of shear. Since our derivation 
also applies when C is a function of x, we reach the same conclusion when X is 
isotropic, but C is not uniform over the surface. This effect cannot be revealed by the 
analyses of the two-dimensional problem that can be found in the literature, by the 
‘inclusion monotonicity’ theorems on drag in Stokes flow (see Kim & Karrila 1991, 
section 2.2.4; Hill & Power, 1956), nor by methods that rely on a uniform distribution 
of bosses such as Jansons’s (1988). We have demonstrated the implications of this 
phenomenon on an example in $8 in which a plate oscillating in its own plane is 
subject to a force with a component perpendicular to the direction of motion. 
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are also due to two referees for their suggestions. 
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