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Pair-collision between viscous drops in a confined shear is simulated to show that
the confinement alters the trajectories of the drops spatially ordering them at a finite
separation in the center of the domain. In contrast to free shear where drops eventually
adopt free streamlines with a finite cross-stream separation, here they move towards
the centerline achieving zero cross-stream separation but a net stream-wise separation.
The latter varies as inverse of capillary number and cube of the confinement (distance
between the walls). The final stream-wise separation does not depend on the initial
positions of the drops when the drops are in the same shear plane. The separation
decreases approximately linearly with the initial separation in the vorticity direction.
An analytical theory explaining the phenomenon is presented. Effects of the ratio
of drop to matrix viscosity are briefly investigated. C© 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4805082]

Hydrodynamic interactions between deformable particles and the bounding walls in a confined
shear are important in microfluidic applications1–4 and microcirculatory flows.5 Due to the small
size and velocity, the flow is governed often by the inertia-less Stokes flow. Stokes flow is linear and
therefore reversible. A number of counterintuitive phenomena are observed in particulate Stokes
flows due to the flow reversibility.6 For instance, in a free shear, a rigid sphere does not experience
any cross-stream motion,7 or a pair of rigid spheres continues in their original streamlines after
collision maintaining the pre-collision cross-stream separation. However, for drops, the reversibility
is broken; drops migrate away from a bounding wall,8, 9 and a colliding pair of drops in free shear
increases their cross-stream separation leading to an enhanced shear induced particle diffusion in
emulsions.10, 11 Reversibility is also broken in presence of finite inertia.12, 13 Finite inertia induces
particle migration to an intermediate position (0.6 radial distance) in a Poiseuille flow first observed
by Segre and Silberberg;14 this inspired a series of theoretical and experimental efforts targeted at
understanding the underlying physics of inertial migration.15–20

Recently, we showed that deformation and inertia can work in unison to generate a new type—
reversed (type II)—of trajectories for a pair of drops in free shear not seen in Stokes flow.12, 13

Such reversed trajectories are also seen in presence of inertia for a pair of rigid spheres.21 The
underlying mechanism has been identified as the inertia induced reversed streamlines around a
single sphere.22, 23 On the other hand, in the Stokes limit, in a confined shear a similar reversed
(called swapping trajectory by the authors) trajectory for a pair of rigid spheres is discovered due to
interactions with the bounding walls.24 Reversibility leads to a swapping of pre-collision streamlines
between spheres. Swapping trajectories have been proposed as a probable cause for experimentally
observed anomalous particle diffusion.25 Here, we show that in presence of both deformation and
confinement, pair interaction gives rise to a specific spatial positioning of drops at fixed separation
in the center of the confined domain.

We numerically simulate the collision of a pair of initially spherical drops of radius a in a
confined shear bounded by walls oriented along the x-axis separated by a distance Ly using a front
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FIG. 1. Hydrodynamic interaction of a pair of drops in a confined shear for Ca = 0.2, Ly = 5a, �x0/a = 2.5, and
�y0/a = 0.25. Drops travel towards the center of the domain.

tracking finite difference method.26–29 The method has been used to study a number of different
problems, including pair interactions in an unbounded shear. The code has been carefully validated
by demonstrating excellent match with prior experimental observations.10, 12 Here the walls are
moved with equal and opposite x-directional velocities to generate a shear γ̇ . The dynamics depends
on the capillary number Ca = μm γ̇ a/�, viscosity ratio (λ = μd/μm), and degree of confinement
Ly/a. μm and μd are matrix and drop phase viscosities, and � is the interfacial tension. Since the code
is not fully implicit, we are limited to simulations with small but finite non-zero inertia. We consider
Re (= ρm γ̇ a2/μm) = 0.02 as a surrogate for Stokes flow simulation. ρm is the density of the matrix
phase. We use a computational domain Lx = 50a and Lz = 5a. Mostly we consider the case of drops
initially placed in the same central z-plane; effects of separation in the vorticity direction have been
briefly considered. We vary Ly to study the effects of confinement on the trajectory of the drops. In
the flow (x) and the vorticity (z) directions periodic boundary conditions are used.

The drops driven by the imposed shear interact, deform—maximum deformation being when
they press against each other along the compression axis of the imposed shear—then separate, and
move in opposite directions (a typical case is shown in Figure 1). However, in contrast to free shear,
here after collision drops do not eventually follow any free streamline.10, 11 Neither do they achieve
a net cross-stream separation. Instead, drops experience a wall induced lateral migration that moves
them to the center line, progressively reducing their cross-stream displacement to zero (Figure 2(a)).
Finally, they achieve a state of relative equilibrium separated by an equilibrium distance �xfinal/a at
the centerline. This is shown explicitly for the case of Ly/a = 4.5 in Figure 2(b). For much larger
Ly/a, �xfinal/a becomes larger, and hence requires much longer simulation in far longer (larger Lx/a)
computational domain. However, after collision, the drop trajectory eventually becomes a straight
line (as can be seen in Figure 2) and therefore, �xfinal/a can be determined by linear extrapolation.
The validity of this extrapolation procedure has been carefully examined and established for several
Ly/a by using simulations in longer domains. Only in the limit of very large inter-wall separation
(Ly/a ∼ 20), wall effects are negligible.

In Figure 3, we investigate the effects of initial separation on the drop trajectory. Chang-
ing initial separation changes trajectory type—increasing initial stream-wise or decreasing initial
cross-stream separation leads to reversed or swapping (type II) trajectory both for rigid spheres and
drops.12 However, here we consider those initial positions which do not change the trajectory type.
With this restriction, Figure 3 shows that �xfinal/a remains independent of initial positions when
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FIG. 2. (a) Relative trajectory of the drops at Ca = 0.2, �x0/a = 2.5, and �y0/a = 0.25 for different Ly values. (b) The
actual trajectories in the domain Ly = 4.5a.
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(a) (b)

FIG. 3. Effects of the initial positions on the relative trajectory: (a) Variation of initial separation in the flow direction �x0/a
for �y0/a = 0.50, Ca = 0.20, and Ly = 5a. (b) Effects of initial separation in the gradient direction �y0/a for �x0/a = 2.50
in the same domain and for the same capillary number.

the drops are in the same shear plane. In Figure 4(a), we consider the effect of initial separation
in the vorticity direction (�z0/a �= 0). For �z0/a ≥ 0.75, drops follow reversed trajectories. One
obtains passing trajectories for smaller �z0/a; in this range as �z0/a is increased, �xfinal/a decreases
approximately linearly (Figure 4(b)). However, unlike when drops are in the same shear plane
(Figure 3), for �z0/a �= 0, �xfinal/a does not remain completely independent of �x0/a and �y0/a (not
shown here for brevity). Henceforth, we choose drops in the same shear plane and initial separation
in the flow and the gradient directions fixed at �x0/a = 2.5 and �y0/a = 0.25.

In Figure 5(a), we show that trajectories for different Ly/a (from simulations in Figure 2) result
in �xfinal/a ∼ (Ly/a)3 for Ca = 0.2. By varying capillary number for three different confinements,
we obtain �xfinal/a ∼ 1/Ca shown in Figure 5(b). For Ca > 0.35, drops experience large stretching
and possible breakup—confinement is known to delay breakup.30 They are not considered here.

In the following, we explain quantitatively the main result—numerically observed scaling for
the stream-wise separation:

�x f inal

a
∼ 1

Ca

(
L y

a

)3

. (1)

We show that the result stems primarily from drops being driven by wall induced migration. Although
the process cannot take place without drop-collision, the interactions between drops do not play any
role long time after collision. We first note that the drop trajectories after collision, as shown above,
are approximately straight lines (Figure 2). That forces attention on the drop velocity. In the flow
direction the velocity of the drop post-collision is dominated by the imposed shear and therefore
can be approximated as ux = γ̇ y, neglecting the small slip velocity as well as the effect due to
the interaction with the other drop, the result becomes more accurate as the drop approaches the
centerline. In Figure 6(a), we note that the lateral velocity uy ∼ −y especially near the centerline
after the effects of collision decays. This explains the straight line trajectory of the drop after
collision: dx/dy = ux/uy ≈ constant. Furthermore, by appropriately rescaling the variables, Figure 6(b)

(a) (b)

FIG. 4. (a) Effects of the initial separation in vorticity direction on the relative trajectory of a pair of drops at �x0/a = 2.5,
�y0/a = 0.25, Ca = 0.20, and Ly = 5a. (b) Effects of �z0/a on �xfinal/a and ymax /a.
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(a) (b)

FIG. 5. (a) Effects of confinement in the gradient direction (Ly) on �xfinal at Ca = 0.20. (b) �xfinal increases linearly with
1/Ca.

shows uy ∼ −y
(
a/L y

)3
. Figure 7 similarly shows a scaling uy ∼ Ca. Therefore,

uy

γ̇ a
= −A × Ca

(
a

L y

)3 ( y

a

)
�= −α

( y

a

)
, A is a constant. (2)

Noting the symmetry between the top and the bottom drops (i.e., �y is twice the vertical separation
of one of them from the centerline), one can integrate (2) to obtain

�y

a
= 2

ymax

a
e−αt γ̇ . (3)

Here ±ymax are the post-collision vertical positions of the top and the bottom drops (measured from
the centerline) wherefrom they follow a linear trajectory (Figure 2(b)). Then noting

dx

dt
= γ̇ y = γ̇ ymaxe−αt γ̇ (4)

and the symmetry obtain

�x

a
= �xb

a
+ 2

α

( ymax

a

) (
1 − e−αt γ̇

) = �xb

a
+ 2

α

( ymax

a

)
− �y

αa
, (5)

where �xb is the flow wise separation immediately after collision. From Figure 2, it seems reasonable
to assume that ymax and �xb are approximately independent of Ly and Ca. The relation suggested by
(5) is verified by the collapse of relative trajectories for different Ly and Ca while scaling �x with
Ca(a/Ly)3 in Figure 8(b). Equation (5) after putting �yfinal/a = 0) gives rise to

�x f inal

a
= �xb

a
+ 2

A × Ca

(
L y

a

)3 ( ymax

a

)
, (6)

explaining �xfinal/a ∼ (Ly/a)3/Ca noted in (1). Figure 8(a) shows this scaling for a number of
different Ly/a and Ca. The dotted line is a linear fit with A = 22.53 and �xb/a = 12.30 for

(a) (b)

FIG. 6. (a) Variation of lateral velocity of the drops with y after collision with increasing confinement from the top at
Ca = 0.20 along with analytical results (straight lines) of Chan and Leal.31 (b) The scaling of velocity with Ly.
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(a) (b)

FIG. 7. (a) Variation of the post-collision lateral velocity of the drops with y at different Ca in the confined domain Ly = 6a.
(b) The scaling of velocity with capillary numbers.

ymax /a = 0.67. The relation �xfinal/a ∼ �z0/a seen in Figure 4(b) can be explained by noting that
�xb/a is approximately invariant and ymax varies linearly with �z0/a (Figure 4(b)).

Note that the relation (2) obtained from the numerically simulated velocities shown in
Figures 6 and 7 proves critical to explain the observed scalings of �xfinal. To understand (2), we
again note that the drop trajectories are straight lines after collision, indicating that the interactions
between the drops then become negligible. Chan and Leal31 performed a perturbative analysis of a
single drop migrating in a shear plane between two parallel plates to get the following migration
velocity:

uy

γ̇ a
= 16 + 19λ

16 + 16λ

3
(
54 + 97λ + 54λ2

)
70 (1 + λ)2 Ca

(
a

L y

)3

⎛
⎜⎜⎜⎜⎜⎝−y∗ − 8y∗(

1 − 4

(
ay∗

L y

)2
)2

⎞
⎟⎟⎟⎟⎟⎠ , (7)

where y∗ = y/a. For small y∗ it can be linearized to obtain Eq. (2) with A = 21.62 for λ = 1,
which is sufficiently close to the linear fit (A = 22.53) of �xfinal/a in Figure 8(a). Also the simulated
velocity matches surprisingly well with this relation (shown by the straight lines) in Figure 6(a) for
different Ly/a. Figure 9 shows the effects of viscosity ratio λ �= 1. We note in the limit λ → ∞
the case reduces to a rigid sphere considered previously24 which would lead to particles reaching
free streamlines. Therefore, as expected, with increasing viscosity ratio, �xfinal/a increases. Figure 9
indicates that λ affects strongly ymax and slightly �xb. The Chan and Leal expression(7) does not
match the simulated migration velocity for λ much larger than unity. The result (6) can be rewritten
including the λ dependence of migration velocity by a function g(λ):

�x f inal

a
= �xb

a
+ g(λ)

Ca

(
L y

a

)3 (
ymax(λ)

a

)
.

(a) (b)

FIG. 8. (a) Composite scaling of �xfinal/a with Ly and Ca for many different values of Ly and Ca. (b) The relative trajectory
of the drops with appropriate scaling.
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(a) (b)

FIG. 9. (a) Effects of λ on the relative trajectory of a pair of drops at �x0/a = 2.5, �y0/a = 0.25, �z0/a = 0, Ca = 0.20, and
Ly = 5a. (b) The effect of λ on �xfinal/a.

Drops achieving a finite separation (�xfinal/a) in the flow direction in a confined shear is a novel
physical phenomenon and to our knowledge has not been mentioned in the literature before. It is
analogous to others where particulate system organizes into specific spatial ordering.32 However,
here it is mediated exclusively by hydrodynamic interactions. Note that recently a particle based
simulation of small number (3 and 6) of red blood cells (RBC) in extremely small capillaries (radius
1.23–1.75 times the effective radius of RBCs) showed them forming clusters in the middle of the
capillaries. As here, RBC deformation caused their migration away from the wall. However, note
that RBCs in that study were modeled as biconcave vesicles encapsulated by a complex elastic
membrane that assumes the shape of a parachute at high flow rate, mediating the hydrodynamics
of clustering phenomenon.33 Although we chose to simulate a symmetric geometry with both walls
moving in opposite directions, with a change of reference frame the physics (relative trajectory of
particles) remains identical for the case, when one wall moves and the other remains stationary.
(It was numerically verified but results are not shown.) The phenomenon reported here assumes
further importance in view of the independence of the final separation of the initial drop positions
when the drops are in the same shear plane (the separation varies linearly with separation in the
vorticity direction). It indicates that a dilute emulsion of drops in a confined shear would have
a tendency to organize into a single file separated by a specific distance that would depend on
intrinsic hydrodynamic parameters, viz., capillary number and degree of confinement. Note that
the parameters studied here are realizable in microfluidic devices. In a 10 μm channel a velocity
of 1 cm/s produces a shear rate γ̇ ∼ 103s−1; with μ ∼ 1–100 mN/m (water viscosity 1 mN/m),
� ∼ 1–100 mN/m, for a 2 μm drop (Ly/a = 5) capillary number is Ca ∼ 0.00002–0.2 also obtained
in microfluidic devices.1, 34 We have investigated drop interactions in linear shear instead of in a
pressure driven flow—more often used in such devices—because the linear shear separates the shear
effects on migration from those due to shear gradient present in a pressure driven flow. The present
phenomenon of spatial ordering can be interrogated, e.g., optically, as a means for determining either
size or deformability, both parameters affect capillary number. Differential migration also offers a
way of filtering based on the same parameters. There has been a recent surge in innovative applications
of size-differentiated inertial migration of rigid particles in pressure driven microfluidic devices for
developing sorting, focusing, and flow cytometry.35–38 Deformation provides an additional parameter
to control migration and in systems with inertia will create additional migratory effects. Linear
chain of droplets separated by a fixed distance has recently seen many novel applications such as
determination of the time evolution of reaction kinetics, protein crystallization, and concentration
indexing using specially designed droplet-pairs.39–41
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