
Backscattering of underwater noise by bubble clouds 
K. Sarkar and A. Prosperetti 
Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland 21218 

(Received 10 February 1992; revised 11 January 1993; accepted 22 February 1993) 

This paper is a continuation of an earlier one [Prosperetti et al., J. Acoust. Soc. Am. 93, 
3117-3127 (1993) ] in which the low-frequency backscattering of sound by hemispherical bubble 
clouds at the ocean's surface was studied. Here, clouds of various geometrical shapes (spheroids, 
spherical segments, cones, cylinders, ellipsoids) are considered and results in substantial 
agreement with the earlier ones and with the experiments of Chapman and Harris [J. Acoust. 
Soc. Am. 34, 1592-1597 ( 1962)] are found. The implication is that the backscattering levels are 
not strongly dependent on the shape of the clouds, which strengthens the earlier conclusion that 
bubble clouds produced by breaking waves can very well be responsible for the unexpectedly 
high backscattering levels observed experimentally. The accuracy of the Born approximation 
used by others for similar problems is also examined in the light of the exact results. Significant 
differences are found for gas concentrations by volume of the order of 0.01% or higher. Finally, 
shallow nonaxisymmetric plumes are briefly considered. 

PACS numbers: 43.30.Ft, 43.30.Gv 

INTRODUCTION 

Recently, the study of the natural mechanisms of un- 
derwater noise generation and the anomalously high back- 
scattering levels often encountered in underwater sound 
propagation have stimulated an intense interest in the 
physics and properties of oceanic bubble clouds (Carey 
and Bradley, 1985; Prosperetti, 1985, 1988a, 1988b; Carey 
and Browning, 1988; Lu etal., 1990; Yoon etal., 1991; 
McDonald, 1991; Henyey, 1991; Lu and Prosperetti, 1993; 
Prosperetti et al., 1993). The present paper devoted to the 
backscattering from clouds of various shapes is a continu- 
ation of our research activity in this area. In earlier studies 
we have considered bubbly layers (Lu and Prosperetti, 
1993) and hemispherical clouds (Yoon etal., 1991; Pros- 
peretti et aL, 1993). These papers may be consulted for 
additional references and a more detailed discussion of the 

motivation and implications of this research. Here we 
merely stress that the mathematical model that we use for 
the description of the acoustic properties of bubble clouds 
has been found to agree remarkably well with experiment 
(Commander and Prosperetti, 1989; Lu et al., 1990; Yoon 
et al., 1991; Nicholas et al., 1993), so that it can be used 
with considerable confidence in the present application. 

The main result of our earlier work devoted to hemi- 

spherical bubble clouds was that the experimental back- 
scattering data obtained by Chapman and Harris (1962) 
could be closely reproduced by making reasonable assump- 
tions on the clouds' size and gas content. The purpose of 
the present study is to strengthen the earlier conclusions by 
demonstrating the relative insensitivity of those results to 
the detailed cloud shape. We consider several examples of 
axisymmetric (spheroidal and other) and nonaxisymmet- 
ric bubble clouds and hemicylindrical clouds and again 
find backscattering levels quite comparable to the experi- 
mental ones. 

We also address the accuracy of the Born approxima- 
tion in estimating scattering from bubble clouds. This part 

of the work is motivated by the use of that approximation 
in some recent studies (McDonald, 1991; Henyey, 1991 ). 
We conclude that the approximation is quite useful up to 
gas volume fractions of the order of 10-2%. In the next to 
the last section we present an approximate treatment of 
nonaxisymmetric shallow clouds. 

Other theoretical studies of the effect of subsurface 

bubbles on surface backscattering are available (see, e.g., 
Crowther, 1980; McDaniel and Gorman, 1982; McDaniel, 
1988). However these are focused on higher frequencies 
and employed a theoretical formulation only suitable for 
exceedingly small bubble concentrations. An analysis of 
the relationship between those formulations and the 
present one is presented in a separate study (Sarkar and 
Prosperetti, 1993). 

I. MATHEMATICAL MODEL 

The mathematical model has been discussed in detail 

in several preceding papers (see, e.g., Commander and 
Prosperetti, 1989; Lu and Prosperertl, 1993; Yoon et aL, 
1991 ), and so will not be repeated here. It has been shown 
in those papers that the governing equation for pressure 
perturbations in the bubbly liquid, dependent on time pro- 
portionally to exp iot, is a scalar Helmholtz equation with 
wave number •c given by 

4rrro2an 

•2=k2 +w•_•2 + 2ib w . ( 1 ) 
Here, k=w/c (with c the speed of sound in the pure liq- 
uid), a is the equilibrium radius of the bubbles, n is the 
bubble number density, b is the frequency-dependent 
"damping constant", and Wo is the natural frequency of the 
bubble. Explicit expressions for these quantities can be 
found in the papers cited before. The gas volume fraction is 
given by 

[3=•rrna 3. (2) 
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The previous expressions hold for equal-sized bubbles. 
Their extension to a distribution of sizes is straightforward 
(Commander and Prosperetti, 1989; Lu and Prosperetti, 
1993) and will not be considered here. Indeed, our earlier 
work (Lu and Prosperetti, 1993) suggests that, at frequen- 
cies much lower than the resonance frequency of the bub- 
bles (i.e., typically, at frequencies below several kHz), the 
results depend mainly on B, with the bubble radius only 
having a minor effect. 

The pressure perturbation in the pure liquid is gov- 
erned by a Helmholtz equation with wave number k. We 
idealize the boundary between the cloud and the pure liq- 
uid as a geometrical surface across which continuity of 
pressure and normal velocity are imposed. The ocean's sur- 
face is taken to be plane and the pressure perturbation is 
required to vanish there. This condition can be conve- 
niently enforced by using an "image" incident wave with a 
suitable phase. 

II. NUMERICAL METHOD FOR AXISYMMETRIC 
CLOUDS 

In our earlier work on hemispherical clouds we made 
use of spherical polar coordinates and separation of vari- 
ables. A similar approach could be followed for hemisphe- 
roidal clouds (see, e.g., Yeh, 1967). However, this would 
lead to complicated functions with a complex argument 
and the results, although analytical, would not be particu- 
larly transparent. For this reason we have preferred to use 
a version of the T-matrix method (see, e.g., Waterman, 
1969; Visscher, 1980a, 1980b). In this way, we are also 
able to treat other shapes for which no separable coordi- 
nate system is available. To reduce the computing require- 
ments we confine our study to axisymmetric shapes. As an 
example of more general shapes, we consider hemi- 
cylindrical clouds in Sees. IV and V below and a simple 
model of nonaxisymmetric "shallow" clouds in Sec. VII. 
An extensive literature is available on the T-matrix method 

[in particular, see Visscher (1980a) whose notation is fol- 
lowed here] and only a very brief description of the proce- 
dure will be sufficient. The basic difference with the case of 

hemispherical clouds of Prosperetti et al. (1993) is that, 
since the boundary does not conform to a coordinate sur- 
face, all the partial wave components are coupled and must 
be determined simultaneously. Mathematically, this cir- 
cumstance leads to an algebraic system the matrix of which 
is full rather than diagonal as in the previous case. 

We write the pressure perturbation œ as the superpo- 
sition of the incident field pine, the field pref specularly re- 
flected from the plane pressure-release surface, and the 
field pscat scattered by the bubble cloud, 

p (X) =pine (X) q_pref(X) q_pSCat (X). ( 3 ) 

The first two terms are_expanded in a complete orthonor- 
mal set of functions {•bS(x}) (where the index s is short- 
hand for the set of indices required for a complete specifi- 
cation ) 

+yr(x) = as(,O. (4) 

Since we only consider plane waves, we take 

c•s-- qS•m= j•( kr) Y•,•( O,q)), (5) 

where Jr is a spherical Bessel function of the first kind, Y•r• 
is a spherical harmonic, and 0 and q• are the polar angles 
defined in the standard way. The radial coordinate r is 
measured from the center of the "footprint" of the cloud 
on the ocean's surface. We choose a coordinate system 
such that the polar axis is orthogonal to the ocean surface 
and directed upward. The plane of incidence is the plane 
q•---0. We take the original incident wave to be plane with 
unit amplitude and its wave vector to make an angle •/ 
(grazing angle) with the z--0 plane. We then have 

pin½=exp( --lk' x), pref= --exp( -- tier' X), (6) 

with k= (k cos g/,0,k sin •/), kr=(kcos•/,0,--ksin•/). 
Then the coefficients ds. are given by 

d•m = 4•r [ 1 - ( - 1 )t+m] ( __i)i•m(Z./2 -- •/,0), (7) 

dr,_ ,• =4•r[ 1 - ( - 1) •+"•] ( -i)t( - 1 )'•Ytm(•'/2-*l,O), 

where the overline denotes the complex conjugate. 
The scattered wave is similarly expanded as 

(8) 

pSCat(x) = • ae&• (x), (9) 

where, in view of the radiation condition, we take 

(10) 

with h•] ) a spherical Hankel function of the second kind. 
At a large distance from the scatterer, using the asymptotic 
properties of h?, we have 

p•t = (Rdr)f .(O,q)exp(-ikr), ( 11 ) 
where R• is the radius of the trace of the cloud on the 
ocean's surface and f. is the dimensionless scattering am- 
plitude given by 

1 

f,(O,v ) =• • al•i•+•Y•(O,v). (12) Im 

The final expression for the dimensionless scattering cross 
section is 

a,(0,•) = (1/•) I f,(0,•) 12 (13) 
Physically, c, represents the scattering cross section non- 
dimensionalized by the area of the "footprint" of the cloud 
on the surface. 

Inside the scattering target we express the pe•urbation 
pressure as 

pCtøUa(x) = Y_. b•s(x), (14) 

where regularity of •$ at the origin makes it identical to •$, 
with k replaced by the effective wave number •c appropriate 
to the bubbly mixture inside the scatterer. 

The objective of the calculation is to determine the 
amplitudes as's and bs's satisfying, on the cloud's surface, 
the conditions of continuity of pressure, 
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p_pClO-d =0, ( 15 ) 

and normal velocity 

n ø [Vp--Vp cløud] =0. (16) 

These conditions are imposed by projection on a complete 
system of functions { fs} and {gs), respectively. By taking 
scalar products we find 

and 

Z ] =o, (17) 

-bs,(gs,n'V•s,)]=O, 
where ( .,. ) denotes the scalar product 

(18) 

(u,v)=f•ffv dE. (19) 
The integration is extended over the surface E consisting of 
the surface of the actual cloud and of its image in the plane. 
This definition can be understood by noting that, as for- 
mulated, the present scattering process is equivalent to the 
superposition of the scattering by an object bounded by the 
surface Y just defined, of the actual beam and an "image" 
beam with opposite phase, both propagating in unbounded 
space. 

Upon introducing infinite matrices Q', Q• •), R", R', 
and R', with elements given by 

' - Qs,.,,=(fs,qbs,), Q•.s, = (fs,½s,), + 
(20) 

n + (R'*)s,s,=(g,, s, ), 

•,s,---- (gs,n' Vc•,), (21) 
where the symbol '• indicates the adjoint, and vectors 
a = {as}, b = {bs}, d = {ds}, the preceding system of equa- 
tions is readily seen to lead to the following formal solution 
for the vector a of scattering amplitudes 

a= - (Q-Q'R"-•R '•') -•X (•)- Q'R"- l•')d = Td. 
(22) 

The choice of the complete system {f s}, {gs} would be 
immaterial if all the terms in the expansions were retained. 
Since, however, one is forced to deal with truncated forms 
of the previous relations, it is important to use functions 
exhibiting fast convergence properties. This question has 
been examined by Visscher (1980a) who suggests the 
choice 

f.•=qbf, gs=n.V•s, (23) 
to which we adhere. It may be shown that, due to the axial 
symmetry of the scatterer, the matrices defined in (20), 
(21) take a block-diagonal form (Visscher, 1980a). Each 
block corresponds to a different value of the index rn and 
the elements of the block depend on the indices l, l'. 

The numerical implementation of the previous scheme 
is not without difficulties. While we have been able to re- 

solve some of them to the extent needed for the purposes of 
the present paper, we cannot claim complete success. The 
problems are due to the slowness of convergence of the 
expansion and to the increasing ill-conditioning of the ma- 
trices with higher-order truncation. This circumstance 
makes it difficult to retain a number of terms sufficient for 

high accuracy. In addition to the functions (23), we have 
also used the conventional spherical harmonics but found 
an even slower convergence. To make sure that the diffi- 
culties encountered were not due to coding errors we have 
obtained analytical results for spheroids of small eccentric- 
ity by domain perturbation and have checked that the code 
reproduced them exactly. 

In the calculations we have retained all the terms with 

/</max = 18. The surface integrations needed for the calcu- 
lation of the scalar products in (20), (21) have been per- 
formed numerically by the 60-point Gauss-Legendre 
quadrature formula. For some cases we have used up to 
100 points with negligible differences. The solution of the 
system (22) was effected with the IMSL routine 
DLINCG. The condition number of the matrices was large 
enough that the routine issued a warning message. To 
make sure that the solution found was, nevertheless, accu- 
rate, we checked by direct substitution that the equations 
of the system (22) were satisfied, and we plotted the two 
sides of Eqs. (15) and (16) as a function of 0 for fixed qo 
to inspect visually the magnitude of the error. Both tests 
were satisfactory. If/max was reduced sufficiently to avoid 
the warning message, it was found that the continuity re- 
quirements (15) and (16) were only poorly satisfied. On 
the other hand, a bigger value for lma x caused a degradation 
in the accuracy of the solution. In general the condition 
number was worse at the lower frequencies, and conver- 
gence slower the greater the difference between the cloud's 
radius and depth. 

After all the tests carried out on the program and the 
numerical results we are satisfied that the code worked 

correctly and that the remaining relatively minor inaccu- 
racies (to be discussed in the following section) are intrin- 
sic to the method in the present application. 

III. NUMERICAL RESULTS: AXISYMMETRIC CLOUDS 

The backscattering strength •B is defined by (see, e.g., 
Urick, 1967) 

• B= R2I.f Ii A,4, (24) 

where I i is the sound intensity of the incident wave, I s is 
the intensity of the wave scattered in the backward direc- 
tion, A•/ is the ensonified area, and R is the distance be- 
tween A•/and the receiver. The definition presupposes that 
A21•R 2. From (12) and (13) we find 

rrRc: rr 
•E•=•-a, (•+,/,rr). (25) 

The ratio in the right-hand side of this equation can be 
approximated by the fraction Wof the ocean's surface coy- 
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ered by whitecaps, which is known experimentally. An em- 
pirical correlation for this quantity is (Monahan and 
O'Muircheartaigh, 1980) 

W=3.86X 10-6U TM, (26) 

where U, expressed in m/s, is the wind speed. For example, 
at wind speeds of 5, 10, and 15 m/s, this relation gives 
W--9.33 X 10 -4, 9.92)< 10 -3, and 0.040, respectively. 

Usually, the backscattering strength is expressed in dB 
according to the definition 

S(r/) = 101ogm Zt• 

= 10 logm rr,(*r/2 + */,rr) + 10 logic W. (27) 

This is the quantity reported by Chapman and Harris 
(1962) who fitted their data to + 3 dB with the expression 

SOD =3.3b logic(r//30 ø) -42.4 logic b+ 2.6, (28) 

where 

b= 107.5( Uv I/3) -o. ss, (29) 

with v= co/2•r is the sound frequency. This correlation was 
obtained on the basis of data over the range 0.4<v<6.4 
kHz, 0<U<15.4 m/s, 3ø<•/<40 ø, although not the entire 
ranges were covered for all values of the variables. The 
functional dependence of (27) and (28) upon the wind 
velocity U is somewhat different. However, it is found nu- 
merically that this difference is well within m 3 dB's for the 
range 5<U<25 m/s, 0.1<v<2 kHz, 5ø<•/<30 ". 

We now compare the predictions of our theory with 
the Chapman-Harris correlation for bubble clouds of dif- 
ferent shapes. We take the bubbles to be all equal and 
uniformly distributed. The effects of a non-uniform distri- 
bution of bubbles were considered in Prosperetti et al. 
(1993) for hemispherical clouds and found to be of 
secondary importance for the range of volume fractions 
and frequencies of present concern. The equilibrium radius 
of the bubbles is taken as 1 mm and the gas volume frac- 
tion in the cloud as 1%. In our previous work (Prosperetti 
et al., 1993) we have studied the effect of these quantities 
and have found it to be small for the frequency range be- 
tween 0.2 and 2 kHz to which we limit our considerations. 

We also only present results for a representative value of 
the grazing angle, •/= 2&, and of the radius of the eloud's 
footprint on the ocean's surface, Re=0.5 m. Other values 
of these quantities are considered in Prosperetti etaL 
(1993) for hemispherical clouds, and a similar dependence 
is expected for the shapes studied here. In the figures the 
right vertical scale is the backscattering strength for a 
windspeed of 10 m/s. The present predictions for U=5, 
15, and 20 m/s can be obtained by subtracting 10.3 dB or 
adding 6.00 and 10.3 dB, respectively. The gray area indi- 
cates the empirical 4- 3 dB error band around the correla- 
tion (28}. 

In Fig. 1 results for the scattering from a prolate 
spheroid with depth d larger than the radius R e of its foot- 
print on the ocean's surface are shown. The solid line cor- 
responds to the spherical case d/Re= 1 considered in Pros- 
peretti et al. (1993). The dotted line is for a spheroid with 

FIG. 1. Dimensionless backscattering cross section for prolate spheroidal 
bubble clouds (left scale) and backscattering strength for a 10-m/s wind 
(right scale) for a 20' grazing angle. At this wind speed the fraction of the 
ocean surface covered by bubble clouds is estimated to be slightly less 
than I%. The gray band indicates Chapman and Harris's (1962} data 
a= 3 dB. The radius of the cloud's footprint on the ocean surface is Re=0.5 
m and the vertical extent of the cloud below the surface is d/Re= 1 (solid 
line), d/Rc=2 (dotted line), and d/Re=5 (dashed lines). The radius of 
the bubbles is 1 mm and the air volume fraction in the cloud is 1% for the 

solid, dotted, and smooth dashed lines and 0.01% for the strongly oscil- 
lating dashed line. 

d/Re=2 (i.e., d= 1 m), while both of the dashed lines are 
for d/R e= 5, the smoother one for a volume fraction of 1% 
and the oscillating one for 10-z%, which is more realistic 
for a depth of d/Re=5. Clearly, the maximum depth 
reached by the bubbles has a very strong effect. The exper- 
imental results (28), which are fairly well approximated by 
the hemispherical cloud, can be more closely reproduced 
with a very slight increase in the cloud's depth. 

The pattern of oscillations exhibited by the results for 
the hemispherical cloud is conspicuously absent from the 
1% spheroidal cloud results. We attribute this to the un- 
satisfactory performance of the numerical method used, as 
described in the previous section. We have found that, as 
the eccentricity of the spheroid was increased from zero, 
the oscillations tended to become weaker and then nearly 
disappear. As was discussed in Prosperetti et al. { 1993), 
these oscillations are not present in the experimental data 
that in fact average over many clouds, and are therefore 
not essential for the present purposes. However their ab- 
sence does indicate an insufficiency of the numerical tech- 
nique. We believe however that the relatively smooth curve 
found numerically represents the basic trend of the actual 
system's behavior as its position was little affected by the 
choice of/max or the use of one or another family of basis 
functions in the scalar products (23). Hence, while the 
present results do not exhibit a large degree of detail, they 
appear to be sufficiently accurate for the present purposes. 
It appears that the numerical problems are mitigated in the 
case of the smaller volume fraction. For small/• the imag- 
inary part of the wave number in the cloud (1) is smaller 
and possibly this feature aids in the numerical resolution of 
the scattering cross section. 

The case of oblate spheroids for which d/R c < 1 is con- 
sidered in Fig. 2 where the solid line is again for the spher- 
ical cloud while the other ones correspond, in descending 
order, to d/Re=0.75 and 0.5. Results for another shape 
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FIG. 2. Dimensionless backscattering cross section for oblate spheroidal 
bubble clouds (left scale) and backscattering strength for a 10-m/s wind 
(right scale) for a 20* grazing angle. The gray band indicates Chapman 
and Harris's (1962) data :e3 riB. The radius of the cloud's footprint on 
the ocean surface is R½=0.5 m and the vertical extent of the cloud below 
the surface is d/Re= 1 (solid line), d/Rc=0.75 (dotted line), and d/R c 
=0.5 (dashes). The radius of the bubbles is I mm and the air volume 
fraction in the cloud is 1%. 

with d/R c < 1, a spherical segment, are shown in Fig. 3 for 
the same values of d/R c. The levels in the two figures are 
comparable, which seems to indicate a relative insensitivity 
to the detailed shape of the cloud, the parameter of greatest 
importance being the depth of submergence. This point is 
examined in greater detail in Fig. 4 where the spheroid and 
spherical-segment results are compared for the two cases 
d/Re=0.75 (upper pair of curves) and 0.5. 

A third axisymmetric shape that we consider (Fig. 5) 
is a vertical cone with the base on the ocean's surface and 

the apex at a depth of•in ascending ordar•d/Rc=0.25, 
0.5, 1, 2, and 5. As in the case of the prolate spheroidal 
shape, the levels become comparable with the experimental 
ones (28) for d/R c somewhere between I and 2 (i.e., d 
between 0.5 and 1 m). Of course this conclusion depends 
on the assumed radius of the footprint as shown in Pros- 
peretti et al. (1993). The magnitude of the effect is worth 
stressing: bubble plumes with a volume of the order of a 

FIG. 4. Comparison of dimensionless backscattering cross sections (left 
scale) and backscattering strengths in a 10-m/s wind (fight scale) for 
spheroidal (solid and dashed lines) and spherical-segment (dotted and 
dash-and-dotted lines) bubble clouds. The radius of the footprint on the 
surface is Re=0.5 m. The upper pair of curves is for d/R•=0.75, the 
lower pair for d/R•=0.5. Note the relative insensitivity of the results to 
the cloud's shape. 

fraction of 1-m 3 covering less than 1% of the ocean's sur- 
face are amply sufficient to account for the observed back- 
scattering levels. 

IV. CYLINDRICAL CLOUDS 

As a simple example of clouds that exhibit a strong 
difference between their extent along the surface and their 
depth we consider now the case of hemicylindrical shapes. 
In this case the cylindrical coordinate system conveniently 
furnishes analytical results and there is no need for the 
numerical method previously described. 

We take the horizontal axis of the cylinder as the y axis 
of a cylindrical coordinate system. The z axis is vertically 
upward and the free surface coincides with the xy plane. 
The radius of the cylinder is denoted by Re. As before we 
set 

pinc _[_pref = exp ( -- fit- x ) -- exp ( -- tk,. x), (30) 

10 • 
O0 

. ,.. -4o • 

012 01.4 016 018 '[0 1'.2 1'.4 116 1'.8 2• -70 
fre7uency (k/lz) 

FIG. 3. Dimensionless backscattering cross section for a bubble cloud in 
the form of a spherical segment (left scale) and backscattering strength 
for a 10-m/s wind (right scale) for a 20* grazing angle. The gray band 
indicates Chapman and Harris's (1962) data :e3 dB. The radius of the 
cloud's footprint on the ocean surface is R½=0.5 m and the vertical extent 
of the cloud below the surface is d/R,= 1 (solid line), d/Re=0.75 (dot- 
ted line), and d/Re=0.5 (dashes). The radius of the bubbles is 1 mm and 
the air volume fraction in the cloud is 1%. 

10 

100 

O0 

20 

-30 

-5(} • 

60 

FIG. 5. Dimensionless backscattering cross section for bubble clouds in 
the form of a right circular cone (left scale) and backscattering strength 
for a 10-m/s wind (right scale) for a 20* grazing angle. The gray band 
indicates Chapman and Harris's (1962) data 4-3 riB. The radius of the 
cloud's footprint on the ocean surface is R•=0.5 m. The vertical extent of 
the cloud below the surface is, in ascending order, d/Rc = 0.5 (solid line), 
d/Re=0.75 (dotted line), and d/R•= 1 (short dashes), d/R•=2 (long 
dashes), and d/Re= 5 (dashes and dots). The radius of the bubbles is 1 
mm and the air volume fraction in the cloud is 1%. 
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where k= (kx,ky,k 0 and k,= (kx,ky,-k:) are the wave 
numbers of the incident and specularly reflected waves. If 
ß / is, .'is before, the grazing angle [i.e., the angle that the 
vector k makes with the (x,y) plane], and y the angle that 
the projection of k on the (x,y) plane makes with the x 
axis, we have 

k.•= k cos •/cos y, ky= k cos ,/sin y, k:= k sin 
(31) 

To write the following formulas more compactly it is useful 
to introduce the auxiliary quantities fc, • defined by 

]•= •x-x-x-•z = k •/cos 2 •/cos 2 y+sin 2 
(32) 

k:•=fc cos •, k•=fc sin •. 
Regularity at the origin and the radiation condition at 

infinity demand that the perturbation pressure field inside 
the cloud and the scattered wave have, respectively, the 
form 

pcløud=e--ik.d' • AnJn(t•)sin nO, (33) 
n=l 

pscat=e-ik•' • B,f/•2)(fa•)sin nO, (34) 
n=l 

where: t•, 0 are the standard radial and angular variables of 
the cylindrical coordinate system and the continuity re- 
quirement of pressure has been partially anticipated in 
writing the y dependence. 

From the continuity of pressure on the interface t• = R c 
we obtain 

BnH? (v) --AnJ,u)= --4( - i)"n(v)sin n•, (35) 
and fi:om the continuity of velocity 

BnVH'n(2)(v) --AnUJ'n(u) = --4( -- i)"J',( v)sin n•, 
(36) 

where 

u= x/-•-•-•c, v=fcR•. (37) 
The amplitudes of the partial scattered waves found from 
(35) and (36) are 

B•= --4(--i)"•u,v)sin n•, (38) 

where: 

!0 o 

•0 • 

50 .o 

FIG. 6. Two-dimensional backscattering cross section (42) from hemi- 
cylindrical bubble clouds (left scale) and backscattering strength for a 
10-m/s wind (right scale) for a 20' grazing angle. The gray band indicates 
Chapman and Harris's (1962) data + 3 dB. The cloud radii are 0.25, 0.5, 
and I m for the dotted, solid, and dashed-and-dotted lines. The radius of 
the bubbles is ! mm and the air volume fraction in the cloud is 1%. 

The dimensionless differential cross section or. is related to 
f. by 

o-, (0) =«l f,(O) I z. (42) 
Clearly the definition (24) of backscattering strength 

used before is not suitable for the present situation. By 
analogy we propose the definition 

•--•Alli' (43) 
where Al is the width of the ensonified region. It may be 
noted that a similar expression would be found from (24) 
by considering a situation in which the source is at a dis- 
tance R from the axis of the cylinder and the ensonifled 
region is rectangular with length R parallel and width Al 
orthogonal to the cloud. 

It should also be noted that, since there is no mecha- 
nism for the reversal of the component of k in the y direc- 
tion, there can be no truly backscattered wave unless 
ky--O, i.e., y--0, •--*/. Restricting ourselves to this case, 
with the definition (43), we have from (42) 

2R• 
•=•- tr, (r/-- rr). (44) 

As before we take 2R•/Al= W to find the same relation 
(28) for the backscattering strength in dB. 

] 

(39) 

We define a dimensionless scattering amplitude f, of 
the babble cloud similarly to (12) by writing that, as 
r--. oo :, pSCat approaches 

if;cat_, RX/• exp(--ik•y--ifc•)f,(O). (40) 
By using the asymptotic properties of H? ) we find 

4(1 +i) • Tn(u,v)sin nO sin n•/. (41) f,(O) =--• .1 

V. NUMERICAL RESULTS: CYLINDRICAL CLOUDS 

As before we consider a reference case consisting of 
clouds with a gas volume fraction of 1% and bubbles with 
a 1-mm radius. For the consideration of backscattering, as 
explained before, we also take the incident plane wave 
propagating perpendicularly to the axis of the cylinder so 
that y=0. 

Figures 6-8 show the dimensionless cross section (42) 
and backscattering strength in dB for grazing angles of 20 ø, 
30 ø, and 80 ø. For the first two cases the gray band indicates 
the Chapman-Harris result. In the figures the dotted line is 
for R•=0.25 m, the solid line for R•=0.5 m, and the dash- 
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FIG. 7. Two-dimensional backscattering cross section (42) from hemi- 
cylindrical bubble clouds (left scale) and backscattering strength for a 
10-m/s wind (right scale) for a 30 ø grazing angle. The gray band indicates 
Chapman and Harfis's (1962) data +3 dB. The cloud radii are 0.25, 0.5, 
and 1 m for the dotted, solid, and dashed-and-dotted lines. The radius of 
the bubbles is 1 mm and the air volume fraction in the cloud is 1%. 

and-dotted line for Re= 1 m. Again a general compatibility 
of the calculated results and the data is observed, not only 
in level, but also in the dependence on frequency. The 
results display the oscillatory structure already encoun- 
tered in the hemispherical case. 

VI. VALIDITY OF BORN APPROXIMATION 

Recently several investigators (McDonald, 1991; 
Henyey, 1991 ) have made use of the Born approximation 
to estimate the backscattering from bubble plumes. Since 
we possess exact solutions, it is interesting to compare 
them with the approximate ones to establish their range of 
validity. We shall do this for the case of hemispherical 
clouds that was treated in Prosperetti et al. (1993). 

To derive the approximation we proceed in the usual 
way by rewriting the Helmholtz equation as 

(V2+k2)p= (k2- sa)p, (45) 

with the understanding that the right-hand side vanishes in 
the pure liquid. [Alternatively, we can consider the bubble 
number density n in Eq. (1) to be a function of position 
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FIG. 8. Two-dimensional backscattering cross section (42) from hemi- 
cylindrical bubble clouds (left scale) and backscattering strength for a 
10-m/s wind (right scale) for a 80 ø grazing angle. The cloud radii are 
0.25, 0.5, and l m for the dotted, solid, and dashed-and-doUed lines. The 
radius of the bubbles is I mm and the air volume fraction in the cloud is 

1%. 

FIG. 9. Comparison of the Born approximation (49) (dotted line) with 
the exact result (solid line) for the dimensionless backscattering cross 
section from a hemispherical bubble cloud with a radius of 0.5 m. The 
grazing angle is 20 ø and the gas volume fraction 10-4%. 

that vanishes in the pure liquid.] Equation (45) can be 
transformed into an integral relation by use of the Green's 
function G(x,x') appropriate to the present case of a 
pressure-release plane boundary, 

exp(-iklx-x'l) 
O(x,x') - 

4rrlx-x'l 
exp( 

(46) 

where x• is the point x' "reflected" in the plane boundary. 
The approximation consists of writing in the integral, in 
place of the exact field solution of (45), the incident field 
plus the specularly reflected wave 

pinc +pref= exp ( --/k" X) --exp( --•k•' x), (47) 

where k r is as in (6). By using the definition (13) of the 
dimensionless scattering amplitude and by exploiting the 
assumed axial symmetry of the cloud, we readily find 

-- dO sin 0 dr fs*= Re 12 JO 
Xr2[1-cos(2k, rcos O)]Jo(2kll rsin 0), (48) 

where R(O) is the trace of the cloud's contour on the 
meridian plane in plane polar coordinates, k• =k sin */, 
and kll = k cos 

For a hemispherical cloud the integral can be calcu- 
lated exactly to find 

•2--k2 k3 ), (49) f•*= 8-•- (•-II F(2kll Rc)--F(2kRc) 
where F(z) =sin z--z cos z. 

The backscattering strength obtained from this result 
is compared with the exact one of Prosperetti et al. (1993) 
in Figs. 9 to 12, all for Re=0.5 m, ,/=20 ø, and bubbles with 
an equilibrium radius of 1 mm. The figures compare a. as 
a function of frequency for increasing values of the gas 
volume fraction B. The solid lines are the exact results and 
the dotted lines the Born approximation. As could be an- 
ticipated, the approximation is better away from reso- 
nances. Even at a volume fraction as low as 10-4% (Fig. 
9), the error in the neighborhood of the lowest resonance 
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FIG. 10. Comparison of the Born approximation (49) (dotted line) with 
the exact result (solid line) for the dimensionless backscattering cross 
section from a hemispherical bubble cloud with a radius of 0.5 m. The 
grazing angle is 20' and the gas volume fraction 10-3%. 

FIG. 12. Comparison of the Born approximation (49) (dotted line) with 
the exact result (solid line) for the dimensionless backscattering cross 
section from a hemispherical bubble cloud with a radius of 0.5 m. The 
grazing angle is 20' and the gas volume fraction 0.1%. 

of the cloud is about two orders of magnitude. At 
/•---- 10-3% (Fig. 10) a significant error persists above the 
fundamental resonance, and at 10-2% (Fig. 11) the ap- 
proximation fails except at very low frequency. At the still 
pretty small volume fraction of 0.1%, there is little resem- 
blance between the Born approximation and the exact re- 
sult (Fig. 12). 

For more general eases it is not easy or possible to 
obtain closed-form solutions such as (49). A low- 
frequency approximation can however easily be derived 
from (48) by keeping the first two terms of the Taylor 
series expansion of the cosine and approximating J0 by I. 
In this way, and passing to Cartesian coordinates, one finds 

f•.=2k• kz--•a Ic xz•dzdx' (50) Re loud 

where the integral is over the trace of the cloud in the 
meridian plane. This form is convenient to derive the seal- 
ing of the scattering amplitude with the dimensions of the 
cloud. By setting x=Re•, z=d• we have 

f •,=k} (ka--aa)Rd13(2 f f • 2 d• d•). (51) 

The quantity in parenthesis is a pure number (equal, e.g., 
to 2/15 for hemispherical and spheroidal clouds, and to 
1/30 for conical clouds), so that this relation predicts the 
scattering amplitude to increase according to the third 
power of the cloud's depth and, therefore, the backscatter- 
ing cross section according to the sixth power. We test this 
prediction with the numerical results of Sec. III for sphe- 
roidal and conical clouds in Figs. 13 and 14 respectively for 
the same conditions as before and for v=0.1 kHz. Here the 

dotted lines are for /•=10-n%, the dashed lines for 
/•---- 10-z%, and the dash-and-dotted lines for/•---- 1%. The 
solid lines are a graph of (51). For the two lower volume 
fraction cases the approximation (51 ) is seen to work well 
up to a depth of the order of I m. There is a slight dis- 
crepancy at the lower depths of immersion which is prob- 
ably due to the numerical difficulties mentioned above 
which are particularly acute when the ratio Rid is very 
different from 1. The higher volume-fraction case shows a 
faster growth with d than predicted by (51) and then a 
flattening out for still greater depths. It may be noted that, 
for these examples, the parameter kR c, on the smallness of 
which the approximation of (48) by (51) relies, has the 
value 0.212. 

'0 

frequerte!t(kltz) 

FIG. 1 I. Comparison of the Born approximation (49) (dotted line) with 
'the exact result (solid line) for the dimensionless backscattering cross 
section from a hemispherical bubble cloud with a radius of 0.5 m. The 
grazing angle is 20' and the gas volume fraction 10 z%. 
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FIG. 13. Dimensionless backscattering cross section at 0.1 kHz for sphe- 
roidal clouds as a function of the eioud's depth d. The solid lines are the 
Born low-frequency approximation (51 ) and the broken lines the numer- 
ical results according to the procedure of Sec. II. The gas volume fractions 
are, in ascending order, 10-n%, 10 z%, and 1%. The grazing angle 
is 
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dimensionless scattering amplitude f. as in (12), where 
now Rc may be taken as the radius of the circle having the 
same area as the footprint of the cloud on the undisturbed 
free surface, we find 

f.__kk• .n f,•F(x• )exp(ikx i .n--,]•11-xfi )a[4', 
(55) 

The low-frequency approximation k[Xll [ -,0 readily gives 
kk x ß n 

f*-- (56) 
FIG. 14. Dimensionless backscattering cross section at 0.1 kHz for con- 
ical clouds as a function of the cloud's depth d. The solid lines are the 
Born low-frequency approximation (51 ) and the broken lines the numer- 
ical results accordin8 to the procedure of Sec. II. The gas volume fractions 
are, in ascending order, 10-4%, 10-z%, and 1%. The grazing angle 
is 20 ø . 

VII. "SHALLOW" CLOUDS 

A nonaxisymmetric case that can be simply treated is 
that in which the maximum depth d of the bubble cloud is 
much less than its horizontal dimensions and, furthermore, 
kd• 1. Even in the axisymmetric case it is worth while to 
have an approximate solution for this case as the T-matrix 
method becomes less and less robust as the ratio d/R c 
becomes smallerß For simplicity we shall not solve the 
problem inside the cloud, but we approximate its boundary 
as a pressure-release surfaceß It has been shown in Pros- 
peretti et al. (1993) that, for the frequency range consid- 
ered here, this procedure yields useful results already at gas 
volume fractions of the order of 1%. 

We again start from the representation { 3) of the pres- 
sure field but now we determine the scattered component 
approximately by requiring that it be a solution of the 
Helmholtz equation subject, on the plane z=O, to the con- 
dition 

I PSCat=F(Xll ) •zz (pinC+pr•) , (52) 

where Xll --= (x,y) is the two-dimensional position vector in 
the plane undisturbed surface and 

z:--F(Xll ), (53) 
is the boundary of the cloud below the free surface. The 
condition (52) arises by satisfying approximately the 
pressure-release requirement p=0 on the surface (53). 

The problem posed can readily be solved by use of the 
Green's function (46) to find the far-field result 

pSCat._, exp(-iklxl) kkx .n fAF(xfi ) 
Xexp(ikxfi -n--&ll -xfi )d,4', (54) 

where n=x/Ixl is the unit vector in the direction of ob- 
servation, kx and kll are the components of k normal and 
parallel to the free surface, and the integral is over the 
footprint .4 of the cloud on the surface. Upon defining the 

where •/' is the volume of the cloud. It is clear from this 

result that f, is proportional to the first, rather than third, 
power of the depth d of the cloud. Since d is small by 
assumption, this circumstance indicates a much stronger 
effect than predicted by the Born approximation. Clearly 
this is not a contradiction as, in the present case, the dif- 
ference in the wave numbers inside and outside the 

cloud•n the smallness of which the Born approximation 
is predicated--is quite large. 

As an example consider a cloud having the shape of an 
ellipsoid with semi-axes g and h (g>h) on the surface and 
semi-axis d in the vertical directionß As in Sec. II the plane 
of incidence is the (x,z) plane and the angle between the 
ellipsoid's minor semi-axis h and the x axis is denoted by 
A simple calculation gives 

2k 2 sin ,/cos 0 dR½ 
f,-- •3 (• cos •--sin •), (57) 

where 

•=k{g•[sin 0 sin(q•--y} +cos ,/sin 

+h2[sin 0 eos(•--7) --cos */cos y]2}t/•. (58) 

Here, as in Sec. II, the angles 0 and qo are the polar coor- 
dinates of the observer referred to a system centered at the 
center of the ellipsoid. For the case of a spheroid g----h =R e 
and the previous expression becomes 

•=kRc[sin 2 0+cos 2 */--2 cos */sin 0 cos q•] tr2. (59) 

Finally, for backscattering, 0=«•r+*/, q•=•r, and (58), 
(59) reduce to 

•=2k cos */[g• sin 2 y+h 2 cos 2 y] 1/2, (60) 
and 

•=2kR, cos r/, (61) 

respectively. The dimensionless cross section is related to 
f, as before by (13). 

We show some numerical results as a function of fre- 

quency in Figs. 15 and 16 for a grazing angle ,/----20*, 
d=0.1 m, and Re( = g•) ----- 0.5 m. Figure 15 is for 
g/h=2 (i.e., g=0.707 m, h----0.354 m) and Fig. 16 for 
g/h =4 (i.e., g= 1 m, h=0.25 m). In the figures the solid 
curve is for the spheroidal case g= h. The dotted line is for 
]/=rr/2, the short-dashed lines for y= rr/4, and the long- 
dashed lines for y=0. 
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FIG. 15. Shallow approximation (57) for the dimensionless backscatter- 
ing cross section from a pressure-release ellipsoidal "cloud." The axes of 
the footprint on the ocean's surface have dimensions g=0.707 m and 
h=0.354 m (g/h=2). The third axis, in the vertical downward direction, 
is d=0.1 m. The dotted line is for an angle y •etwecn the projection of the 
incident wave vector on the horizontal plane and the minor horizontal 
axis of the ellipsoid equal to 0, the short-dashed line is for y= •r/4, and the 
long-dashed line for y=•r/2. The solid line is for the spheroidal case 
g/h = 1. The grazing angle is 20 ø. 

VIII. CONCLUSIONS 

We have studied the effect of the shape of bubble 
clouds at the surface of an idealized plane ocean on the 
backscattering strength from the surface. This study com- 
plements the results reported earlier (Prosperetti et al., 
1993) where hemispherical clouds were treated in detail. 
Both studies have been based on a relatively simple model 
of bubbly liquid that has been found to be in excellent 
agreement with available data (Commander and Prosper- 
etti, 1989; Lu etaL, 1990; Yoon etal., 1991). 

The conclusion of the present investigation is that the 
backscattering strength is but little affected by the detailed 
shape of the cloud. For all the cases considered, with rea- 
sonable assumptions on bubble population, cloud volume, 
and cloud surface coverage, we find backscattering levels in 
very good agreement with the Chapman and Harris 
(1962)' experimental data. The effect of bubble clouds is 
quite strong. To fit the data for 10-m/s winds, for example, 

we only need clouds covering less than 1% of the ocean's 
surface, each occupying a volume of less than 1/3 m 3 and 
containing a total amount of gas of the order of 2 liters. 
Our findings therefore strongly support the suggestion that 
the unexpectedly high levels measured are due to the bub- 
ble clouds produced by breaking waves. 

A similar conclusion has been reached in McDonald 

(1991) and Henyey (1991} where the backscattering 
strength of much more tenuous bubbly structures--so- 
called "plumes"--was studied. It is not possible in the light 
of the available evidence to discard one mechanism in favor 

of the other one and, indeed, it is quite possible that both 
clouds and plumes give contributions of comparable mag- 
nitude to the backscattering process. Experiments are re- 
quired to discriminate between the two mechanisms and 
assess their relative importance. An experimental' basis for 
such a distinction could conceivably be found in the fact 
that plumes are long-lived structures, while clouds are 
highly transient ones. Furthermore clouds, being produced 
by breaking waves, would also be responsible for strong 
acoustic emission in addition to scattering. In an ideal field 
experiment one would irradiate in a pulsed mode a limited 
surface area of the ocean and monitor both visually and by 
passive sonar the local occurrence of wave breaking. If the 
mechanism studied here is important, one would expect a 
strong correlation between enhanced backscattering and 
acoustic emissions. 

We have also examined the validity of the Born ap- 
proximation used in McDonald (1991) and Henyey 
(1991) for the study of bubble plumes. We have found 
that, for the range of gas volume fractions considered in 
those studies, the approximation is probably justified. 
Large differences with exact results would however be 
found already at gas volume fractions as low as 10-z%. 
Finally, in a short analysis of the limit of three-dimensional 
shallow clouds, we have found that, for moderate or large 
volume fractions, the intensity of the backscattering is 
much stronger than what the Born approximation would 
lead one to believe. 
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FIG. 16. Shallow approximation (57) for the dimensionless backscatter- 
ing ero• section from a pressure-release ellipsoidal "cloud." The axes of 
the footprint on the ocean's surface have dimensions g=0.1 m and 
h=0.25 m (g/h=4). The third axis, in the vertical downward direction, 
is d=0.1 m. The dotted line is for y=0, the short-dashed line for y=•r/4, 
and the long-dashed line for y=•r/2. The solid line is for the spheroidal 
case g/h = 1. The grazing angle is 20 ø. 
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