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a b s t r a c t

Effects of drop and matrix viscoelasticity on the retraction of a sheared drop are numerically investigated.
Retraction of an Oldroyd-B drop in a Newtonian matrix is initially faster and later slower with increasing
drop Deborah number. The observed behavior is explained using an ordinary differential equation model
representing the dominant balance between various forces during retraction. The initial faster relaxation
of viscoelastic drops is due to viscoelastic stresses pulling the drop interface at the tips inward. The later
slower retraction is due to the slowly-relaxing viscoelastic forces at the equator, where they act against
the capillary force. The drop inclination decreases substantially during retraction unlike in a Newtonian
case. Matrix viscoelasticity slows the relaxation of a Newtonian drop because of the increasingly slow
relaxation of highly stretched polymers near the drop tip with increasing Deborah number. Increasing
the ratio of polymeric to total viscosity further accentuates the viscoelastic effects in both cases. For an
Oldroyd-B drop in an Oldroyd-B matrix, a competition between the dispersed and the continuous phase
elasticities, represented by their ratio, determines the dynamics; larger values of the ratio leads again to
initial faster and later slower retraction.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Drop deformation and its subsequent interfacial tension driven
retraction after flow cessation are fundamental to the understand-
ing of the rheological behavior of emulsions. The retraction process
can also be used to measure the interfacial tension between the
drop and the matrix phase, once the dynamics is mathematically
related to the interfacial tension [1–4]. One would expect the mate-
rial response of the drop and the matrix phases to critically affect
the retraction dynamics, and therefore the measurement process.
In this paper we investigate the retraction of a sheared drop when
the drop and/or the matrix phases are viscoelastic.

The drop dynamics in a zero-inertia Newtonian system has
been extensively studied [5–13]. In recent years two departures
from this system—finite inertia [14–22] and viscoelastic constitu-
tive equations [23–33]—have received increased attention. Unlike
the Newtonian case, viscoelastic systems are poorly understood,
and there are widespread controversies [29,30,34–39] (see [40]
for a review). The problem lies in the subtle competition between
the developing viscous and viscoelastic stresses. Therefore there
is a critical need to carefully simulate such flows and develop
an intuition for them comparable to the Newtonian system. We
have recently developed a robust algorithm for viscoelastic system
[24], and simulated drop deformation and breakup in shear when
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the drop or/and the matrix phases satisfy Oldroyd-B model (O/N,
N/O, O/O) [40–43]. Simulation provides detailed information about
the stresses, that proved critical for explaining the simulated non-
monotonic response of drops to shear as well as results from earlier
viscoelastic experiments [35,37].

Drop retraction method for estimating surface tension has
mostly been used for polymeric liquids with substantial elasticity.
Yet the analysis were based on either small deformation theory
[1,3] or the Maffetone–Minale ellipsoidal drop model [2]; both
theories assume a Newtonian constitutive behavior. As to drop
relaxation in a viscoelastic system, Tretheway and Leal [25] per-
formed a detailed experimental study of a Newtonian drop relaxing
in a non-Newtonian fluid after a planar extensional flow was
stopped. They concluded that the elastic stress developed at the
boundary fundamentally changes the large deformation dynamics
and retards the relaxation process. Similar retarding influence of
matrix viscoelasticity is also seen in shear [44], where the authors
compared experimentally observed dynamics against models pro-
posed by Maffettone and Greco [39] and Yu et al. [32]. Numerically,
Yue et al. [45] performed a two-dimensional simulation of the
retraction process, and found that for an initially ellipsoidal drop
shape with zero velocity and zero stress, viscoelasticity in the drop
or in the matrix affects the retraction process in the same way.
The drop retraction initially is faster because, as the authors sug-
gested, the retarding viscoelastic stress is yet to develop, and after
it develops it slows the retraction. However, even for the more real-
istic case of a sheared drop with a nonzero initial stress, they found
similar visoelastic effects on the retraction dynamics for the O/N
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system as that of the initially unstressed drop. The initial accel-
eration and eventual retardation of the retraction for a sheared
drop with fully developed viscoelastic stresses therefore remains
puzzling and justifies further investigation in a three dimensional
setting. The matrix viscoelasticity (N/O) for an initially stressed
drop affects the retraction in a much more pronounced way, and the
retraction is always slower with increasing viscoelasticity. Exper-
iments and simulation using an Oldroyd-B model performed by
Verhulst et al. [46] showed that the behavior of a viscoelastic drop
(O/N) does not differ much from that of a Newtonian one (N/N),
whereas viscoelastic matrix (N/O) slows down the process consid-
erably.

The drop dynamics in a viscoelastic system is a result of subtle
interplay between different forces. Careful experiments and simu-
lation of model systems are critical for understanding it. To this end,
Boger fluids with controlled rheological properties have become
the experimental system of choice. However, unlike simulation,
experiments cannot describe the details of how the viscous and
viscoelastic stresses develop in a transient flow. Transient flow has
been shown to drastically alter the drop break up in a Newtonian
system [47]. Drop retraction offers a simple enough transient flow
which can be used to understand stress development and its effects
on the flow, as we will see in this paper, which justifies the detailed
three dimensional simulation of the process.

In this paper, we numerically simulate the relaxation of a
sheared drop when either or both of the drop and matrix phases are
Oldroyd-B. We use a 3D front tracking finite difference method sim-
ilar to our previous studies. Section 2 briefly describes the method
and the problem set-up. Section 3 proves convergence and com-
pares with previous experiments. Section 4 describes the results for
an Oldroyd-B drop in a Newtonian matrix (O/N), a Newtonian drop
in an Oldroyd-B matrix (N/O), and an Oldroyd-B drop in an Oldroyd-
B matrix (O/O). We carefully analyze the viscoelastic forces around
the drop interface to explain the simulated observations. We also
develop a simple ordinary differential equation (ODE) model in the
Appendix A, that we believe, captures the essential dynamics of the
viscoelastic stresses in the O/N retraction. Section 5 summarizes our
findings.

2. Mathematical formulation and numerical
implementation

The formulation and the numerical implementation based on
front tracking method are sketched briefly here as they are dis-
cussed in detail before [24,41]. The system is governed by the mass
and the momentum equations:

∇ · u = 0,
∂("u)
∂t

+ ∇ · ("uu) = ∇ · ! −
�

∂B

dxB#n$ı(x − xB),

(1)

in the entire computational domain. " is the density, p is the pres-
sure, $ is the interfacial tension between the drop and the matrix
phase, ∂B is the drop surface consisting of the points xB, and #, the
local curvature. n represents the outward normal on the drop sur-
face, and ı(x − xB) is the three dimensional Dirac delta function. The
total stress tensor % is given by:

% = −pI + Tp + T v, T v = &sD,

'

�
∂Tp

∂t
+ u · ∇Tp − (∇u)Tp − Tp(∇u)T

�
+ Tp = &pD,

(2)

where &s is the solvent viscosity and D = (!u) + (!u)T is the strain
rate tensor. Tp is the viscoelastic stress due to the presence of
polymer and, as shown, satisfies Oldroyd-B equation. &p is the
polymeric viscosity, and ' is the relaxation time. The superscript
T represents the transpose. Note that our choice of constitutive

equation despite its problem in extensional flows is based on its
simplicity. For the Deborah numbers considered here, we did not
see any change in basic behavior with introduction of a finite limit
on the polymer extension.

The moving drop interface or the front is discretized by triangu-
lar elements. The material properties, such as ",& and ' that might
be different in the matrix and the drop phase (in this paper, den-
sity and viscosity are the same in both phases), are represented as
smoothly varying over a few grid spacings across the interface. The
interfacial tension force shown as a singular volume force in Eq. (1)
is also similarly distributed over a finite thickness around the inter-
face. Once such a smoothed version of the system is obtained, it is
solved using an explicit operator splitting/projection-based finite
difference method on a regular staggered Cartesian grid. The front
is updated using an interpolated velocity on the front grid. Adap-
tive regridding is used to avoid excessive distortion of the front
elements. An elastic/viscous stress splitting scheme is used for the
upper convected derivative [24,41]. The pressure Poisson equation
is solved using a multigrid method. An ADI method is used to avail
a larger time step.

A spherical drop of radius a is placed in a computational domain
of size Lx = 10a, Ly = 10a and Lz = 5a, with a grid resolution of
98 × 98 × 49 (grid convergence is discussed below). Velocities U and
−U are imposed on the upper and the lower y-boundaries respec-
tively to create a free shear (̇ = 2U/Ly. The flow is stopped after
the drop has reached a steady shape, and then the drop is allowed
to relax. We use a and %ca =&m/($ /a) to non-dimensionalize
length and time. The relevant non-dimensional parameters are
Reynolds number Re = "ma2(̇/&m, capillary number Ca = %ca(̇ ,
Deborah number De = '(̇ , viscosity ratio '& =&d/&m, density ratio
'" ="d/"m and ˇ =&pd/&d or ˇ =&pm/&m—the ratio of the poly-
meric viscosity to the total viscosity. Subscripts m and d correspond
to the matrix and the dispersed phase respectively. Because the
code is explicit, the code cannot simulate Stokes flows; simula-
tions are performed at Re = 0.1 representative of a small Reynolds
number case (see Section 3). The total viscosity is &d =&sd +&pd or
&m =&sm +&pm, sum of the solvent and polymeric viscosities. In the
interest of brevity, we restrict the computation to '" ='& = 1 and
Ca = 0.3 (drops do not break up but attain a moderate deformation
at this capillary number). Note that viscosity ratio does affect signif-
icantly drop deformation in a viscoelastic system [43]. The value of
ˇ is 0.5 for all the computations, except where we study the effect of
ˇ variation. We use the Taylor criterion D = (L − B)/(L + B) as a mea-
sure for drop deformation, with L and B being the semi-major and
semi-minor axes of the drop. In our simulation t′ = t/%ca = 0 coincides
with the time when the shear has been switched off.

3. Convergence study and comparison with previous work

As mentioned above, the drop is first deformed by a constant
shear, and after it reaches a steady shape, the shear is stopped. As
our simulations are at Re = 0.1, inertia introduces a finite relaxation
time for the velocity profile, i.e. after the velocity boundary con-
ditions at the upper and the lower boundaries are changed, unlike
in Stokes flow, it takes a finite time to affect the overall flow field.
Therefore, along with the change in velocity boundary conditions,
we also subtract the shear velocity (̇y in the entire flow field at t′ = 0
(a simple shear (without any drop) would instantaneously relax in
a Stokes flow when the bounding plates are stopped). In Fig. 1(a)
we plot D vs. t′ for Ca = 0.14 and p = 0.5, where p = De/Ca (for valida-
tion, we use p to characterize as in ref [44]) with and without this
subtraction. The simulation without subtraction shows a finite lag
but otherwise they are similar. Inclination angle evolution in the
inset of Fig. 1(a) shows a similar lag for the unmodified simulation.
Subtracting (̇y from the velocity profile changes !u (particularly
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Fig. 1. (a) Comparison of transient deformation of a viscoelastic drop in a Newtonian
matrix for Ca = 0.14, p = 0.5, '& = 1 with and without subtracting (̇y from the flow
when the flow is stopped. Inset shows the variation of inclination angle with time
for the same data. (b) Deformation D normalized by the steady state value (at t′ = 0)
with varying discretization level from 80 × 80 × 40 (80×) to 130 × 130 × 80 (130×)
for Ca = 0.3, Ded = 2 and '& = 1.

the ∂u/∂y term) abruptly. To ensure that the simulation results are
correct, deformation, inclination and force plots (based on which
we explain our results) are computed with and without subtracting
(̇y and found to be similar except for the finite time lag. Further-
more, as discussed below, the procedure is able to match with an
analytical solution for the Newtonian system (see Fig. 2) making us
confident about the code.

We have established computational convergence for Oldroyd-B
algorithm in the previous studies both for viscosity matched [40,41]
and unmatched [43] systems. In Fig. 1(b) we plot the transient
evolution of deformation parameter of an Oldroyd-B drop relax-
ing in a Newtonian matrix by varying the discretization level from
60 × 60 × 30 to 130 × 130 × 65 showing very little variation beyond
80 × 80 × 40. In the interest of achieving a reasonable computa-
tional time, the 98 × 98 × 49 resolution is chosen for our study.

To estimate the interfacial tension using the time-dependent
relaxation of drops, Luciani et al. [1] used an equation due to Ralli-

Fig. 2. Deformation of a retracting Newtonian drop in a Newtonian matrix at vary-
ing capillary numbers: comparison of simulation and small deformation analytical
model (Eq. (3)).

son [7]

D = Do exp

�
−

40('& + 1)
(2'& + 3)(19'& + 16)

�
$
&ma

�
t

�
, (3)

where Do is the initial deformation (when the shear was stopped).
Our simulation at Ca = 0.15 matches extremely well with Eq. (3)
which is valid for small deformation (Fig. 2). For higher capillary
numbers, deformation is large and the simulation deviates from
the analytical relation.

Data for drop retraction for viscoelastic cases are limited in the
literature. In Fig. 3 we compare our simulation with experimental
[44] and analytical [39] results for a Newtonian drop retracting in
a viscoelastic matrix. Our simulation matches very well with the
experimental results till t′ ≈ 2 for Ca = 0.14, p = 0.5 where p = De/Ca,
and beyond that time the experimental result relaxes more slowly;
this may be due to the inability of the models (Oldroyd-B equa-
tion or second-order fluid for the Maffetone and Greco model)
to accurately describe the matrix liquid. The analytical curve is

Fig. 3. Comparison of simulation with experiments by Sibillo et al. [28] and
Maffettone–Greco (MG) model for a Newtonian drop retracting in a viscoelastic
matrix at Ca = 0.14, p = 0.5, '& = 1, and (in the inset) Ca = 0.07, p = 1.4, '& = 1.
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Fig. 4. Deformation of a viscoelastic drop in a Newtonian matrix normalized by its
initial value at Ca = 0.3 for different Ded . Inset shows inclination angle of the drop
for the same cases.

very close to our simulation. For Ca = 0.07, p = 1.5 (Fig. 3 inset), our
simulation again corresponds well to the initial trend of the exper-
imental results (till t′ ≈ 3), and then deviates a little. The analytical
result is slower than the simulation and the experiment, latter two
matching in the initial part of the evolution. Later the experimental
observation seems to suggest a slowing down of the drop retraction.
Note that the analytical model due to Maffettone–Greco (MG) [39]
is based on a second-order fluid model different from Oldroyd-B.
Based on these tests, we are reasonably certain about the accuracy
of our numerical method for simulating drop retraction.

4. Results and discussion

4.1. Oldroyd-B drop in a Newtonian matrix (O/N)

In this section we investigate the transient deformation of an
Oldroyd-B drop relaxing in a Newtonian matrix. As mentioned
before, the study in this paper is restricted to the case of Ca = 0.3,
which leads to moderate deformation and yet the drop remains
bounded. Fig. 4 plots the transient deformation normalized by
its initial value (when the retraction starts) for various Deborah
numbers. We see that with higher Ded (higher relaxation time),
drops initially retract quickly as compared to drops with lower
Ded values. However after a certain period of time, we notice a
trend reversal—slowing down of the relaxation process, the effect
increasing with increasing Ded. Such a trend reversal was also
noted in recent two-dimensional simulation [45], both for initially
stress-free ellipsoidal drops and for sheared drops with viscoelas-
tic stresses at t′ = 0, developed during shearing. For the initially
unstressed drops, the authors ascribed the phenomenon to the
finite time needed for development of the viscoelastic stresses that
impede deformation. However, the persistence of the phenomenon
in the case of drops with initial viscoelastic stresses presents a
puzzle, and needs careful scrutiny of the evolution of stresses.

Plot of the inclination angle in the inset of Fig. 4 for the same
cases shows an interesting feature in that, while a Newtonian drop
relaxes to its spherical shape without any change in its inclina-
tion, a viscoelastic drop changes its inclination during retraction. A
viscoelastic drop achieves a higher inclination angle than its New-
tonian counterpart during shear, but during retraction, the angle
decreases and the rate of decrease is higher for higher Ded reach-

Fig. 5. Viscoelastic normal force (Fp
n = n · (∇ · TP )) at the (a) pole and the (b) equator

for a viscoelastic drop in a Newtonian matrix at Ca = 0.3 with varying Ded .

ing finally lower than the N/N inclination. One should however be
careful that at the later stage of the process, the angle is hard to
determine for a nearly spherical drop. Note that the angle change
is clearly due to the persistence of the memory of the original shear
through the viscoelastic stresses. For an ellipsoidal drop with zero
initial stress and velocity, the drop axis does not change its inclina-
tion (not shown here).

In Fig. 5(a) and (b), we plot the force FP
n = n · (∇ · TP) due to elas-

tic stress at the pole (drop tip) and the equator respectively. (!·TP

is the force that a fluid element feels per unit volume due to elas-
tic stress, and appears in the momentum Eq. (1). In the Newtonian
limit (Ded → 0), the extra stress TP becomes &pD. From Fig. 5(a)
we see that the elastic normal force at the pole is compressive, i.e.
trying to reduce L, which results in a lower deformation for the
viscoelastic drop with increasing Ded. It results in quicker initial
relaxation with increasing Deborah number (Fig. 4). On the other
hand, elastic force at the equator shows a non-monotonic behav-
ior in Fig. 5(b). For low Deborah numbers—as soon as the shear
stops, it falls sharply from its original positive (tensional) value and
for lower Ded to a negative minimum and then grows to eventu-
ally reach zero. The minimum becomes more negative as Ded is
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Fig. 6. Viscoelastic drop retracting in a Newtonian matrix for varying ˇ(=&pd/&d) at
Ca = 0.3 and Ded = 1.0. Inset shows the inclination angle of the drop with the flow-axis
for the same cases.

decreased. A negative, i.e. compressive force at the equator hinders
retraction. At the start of relaxation, with increasing Ded, decreasing
compressive force quickens retraction. However, at later time, one
sees lower compressive force for higher Ded, e.g. force is smaller
for Ded = 0.5 than for Ded = 0.1. This force at the equator explains
the later slower retraction at higher Ded. Below we will provide a
simple model for the phenomenon.

Next we investigate the effect of relative amount of drop vis-
coelasticity by varying ˇ keeping total viscosity as well as other
parameters constant. In Fig. 6 we plot deformation parameter vs.
time for Ca = 0.3 and Ded = 1 for various ˇ. For a very low value
ˇ = 0.1, the retraction is almost linear (on a semi-log plot) similar
to a Newtonian drop. Increasing ˇ makes the process non-linear.
Drops with higher ˇ initially retract quickly, but at later time,
become progressively slower with lower ˇ cases relaxing in less
time. Fig. 6 inset shows faster relaxation of inclination angle with
time, as the drop viscoelasticity increases. Note that even though
the behavior with ˇ variation is similar to that with Deborah vari-
ation, the detail is different. For different ˇ, the crossover between
different curves takes place around the same time because the same
Ded value leads to the same time scale for these cases. Because we
noted that eventual retardation of the retraction is dominated by
the force at the equator, in Fig. 7, we plot time evolution of FP

n at the
equator for the same data of Fig. 6. For higher ˇ, polymeric forces
are higher (compressive at the pole and tensional at the equator);
initially they result in increased rate of retraction for increased ˇ,
and later, force curves for different ˇ cross over to indicate that the
forces for lower ˇ cases become more effective making them relax
in less time.

In an attempt to understand how the viscoelastic stresses affect
the retraction process, specifically what causes the faster initial
retraction and latter slowing down of viscoelastic drops, we cre-
ate a toy model (detailed in the Appendix A) that embodies the
dominant force balance. The model is based on the fact that the
flow during the retraction is roughly extensional with compres-
sion along the pole (x′ axis) and extension along the equator (y′

axis) (see Fig. 8). Therefore the dominant viscoelastic stresses are
T̂P

x′x′ and T̂P
y′y′ which would concurrently relax along with the drop.

This is modeled by Eqs. (A.5)–(A.7) presented in the Appendix A. For
the initial condition on stresses in the model, we use volume aver-
ages from the simulation. We show the evolution of stresses as well

Fig. 7. Viscoelastic normal force (Fp
n = n · (∇ · TP )) at the equator of a viscoelastic

drop retracting in a Newtonian matrix at Ca = 0.3 and Ded = 1 with varying ˇ.

as the normalized deformation in Figs. 9 and 10. Because the toy
model just has representative terms for different forces, only a qual-
itative comparison between the model and simulation is possible.
We see that the model predicts the initial faster relaxation followed
by slower one for higher Ded (Fig. 9a). Furthermore, the evolution of
stresses (Fig. 9b and c) from the toy model is seen to show behavior
similar to those from the simulation, giving further credence to the
model. Initially positive T̂P

x′x′ first reduces to a negative value and
then rises to become zero. T̂P

y′y′ behaves in an exact opposite way:
it has a small negative value at the start of retraction, it increases
to become positive, and then decreases to zero. Eqs. (A.6) and (A.7)
explain this behavior—the 2 ˆ̌ X term (representative of &pD in Eq.
(2)) initially dominates to reduce T̂P

x′x′ and increase T̂P
y′y′ . The strain

rate is proportional to the deformation and reduces with it, and in
later times, stresses exponentially reduce to zero governed by Eqs.
(A.6) and (A.7) with zero right-hand sides. Note also that for even-

Fig. 8. Velocity field around a retracting viscoelastic drop shows an extensional
flow.
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Fig. 9. (a) Deformation of a viscoelastic drop retracting in a viscoelastic matrix pre-
dicted by an ODE model for different Ded . (b) Evolution of Tp

x′x′ from the simulation
and the model (inset) for the same cases. (c) Evolution of Tp

y′y′ from the simulation
and the model (inset) for the same cases. The simulations are at Ca = 0.3.

Fig. 10. (a) Deformation of a viscoelastic drop retracting in a viscoelastic matrix
predicted by an ODE model for different ˇ. (b) Evolution of Tp

x′x′ from the simulation
and the model (inset) for the same cases. (c) Evolution of Tp

y′y′ from the simulation
and the model (inset) for the same cases. The simulations are at Ca = 0.3.



Author's personal copy

346 S. Mukherjee, K. Sarkar / J. Non-Newtonian Fluid Mech. 165 (2010) 340–349

Fig. 11. Deformation and inclination angle (inset) of a retracting Newtonian drop
in a viscoelastic drop for varying Dem at Ca = 0.3.

tually a positive T̂P
y′y′ , both terms in the right-hand side in (A.7)

retard its decay. However in (A.6) the second term in right-hand
side is aiding the decay of T̂P

x′x′ , while the response of the other
term depends on the sign of T̂P

x′x′ . We also note that both stresses
reach extremum (minimum for T̂P

x′x′ and maximum for T̂P
y′y′ ) at

(T̂P
x′x′ )

min
= −2ˇX/(1 + 2DeX) and (T̂P

y′y′ )
max

= 2ˇX/(1 − 2DeX). We

note that |(T̂P
y′y′ )

max
| > |(T̂P

x′x′ )
min

|. These observations explain that

in later time while decaying to zero, T̂P
y′y′ is larger in magnitude than

T̂P
x′x′ , and therefore, primarily responsible for the eventual slowing

down of the retraction process. The model Eq. (A.5) predicts that
the retraction in the N/N case is exponential with a capillary time
scale. For viscoelastic drops, initially the high positive T̂P

x′x′ (as well
as the small negative T̂P

y′y′ ) results in the faster decay in the defor-
mation with increasing Deborah number. However at later times,
the higher T̂P

y′y′ slows down the retraction for higher Deborah num-
ber cases, according to (A.5). In Fig. 10, we show the same cases at
Ded = 1, but with varying ˇ. Once again, we see similar evolution
of stresses both from the model and the simulation. At higher ˇ,
T̂P

x′x′ is higher and leads to quicker relaxation initially. However, for
the reason given above, T̂P

x′x′ relaxes quickly (Fig. 10b), and eventu-
ally T̂P

y′y′ dominates (Fig. 10c). Higher T̂P
y′y′ for higher ˇ retards the

relaxation process more effectively at later times, which leads to a
crossing of the model deformation curves for different ˇ (Fig. 10a)
similar to the simulation (Fig. 6). For an initially ellipsoidal vis-
coelastic drop with zero initial stresses, simulation leads to similar
behavior—initially faster and later slower retraction—as was also
seen in 2D simulation before [45]. We do not show it in the interest
of brevity. The ODE model was also able to predict it. We note that
the results showing change in trend and other subtle variations are
because of the complex evolution and the interplay of different vis-
coelastic stresses. They are the reason for contradictory results in
the literature for drop deformation in viscoelastic systems [41].

4.2. Newtonian drop in Oldroyd-B matrix (N/O)

Next we investigate the deformation of a Newtonian drop in
an Oldroyd-B matrix. In Section 3, we saw that our simulation
reasonably matches with the experimental results. In Fig. 11, D

Fig. 12. Viscoelastic normal force (Fp
n = n · (∇ · TP )) at the pole for a Newtonian drop

retracting in a viscoelastic matrix at Ca = 0.3 with varying ˇ. Inset shows a sheared
Newtonian drop in an Oldroyd-B matrix for Ca = 0.3, De = 2.5 and ˇ = 0.75.

vs. time shows that increasing matrix viscoelasticity increasingly
slows down the retraction. Sibillo et al. [44] experimentally noticed
similar slowing down of drop retraction by matrix viscoelastic-
ity. Fig. 11 inset plots the inclination angle ϕ for the same cases.
Increasing matrix viscoelasticity leads to lower inclination angle
for a sheared drop. During relaxation, it does not change much.

Polymeric force FP
n at the pole in Fig. 12 shows that it is ten-

sional and opposite to that in the O/N case. Force at the equator
(not shown) is an order of magnitude smaller than that at the pole.
Therefore, the force at the pole is primarily responsible for the pro-
cess, and the retarded relaxation is far easily explained compared to
the O/N case. The tensional force at the pole hinders retraction, and
being higher for higher Dem, slows retraction more effectively. In
fact, the effect of matrix viscoelasticity is much more pronounced
compared to that of the drop. Tretheway and Leal [25] in their
study of drop retraction in an extensional flow suggested that the
increased tensile stress induced by the contraction of the drop poles
causes the retardation of the retraction process in a viscoelastic
matrix. This is in accordance with our finding of extremely high
viscoelastic forces at the pole. They observed pointed drop tips for
drops deforming in a viscoelastic matrix and attributed the effect
to local extension of polymers because of non-linear interaction
between drop shape change, flow modification and polymer con-
figuration. We also see pointed drop tips (inset of Fig. 12).

In Fig. 13, we see that the relaxation is also retarded with
increasing ˇ at the same Dem = 1. However, the effect is not as
pronounced as changing Dem. The inset of Fig. 13 shows that the
normalized deformation parameter at non-dimensional times 2
and 4 increases linearly with ˇ. This can be explained by noting
that the retarding viscoelastic stress in the matrix is linear with ˇ.
Therefore, a decay equation for deformation such as (A.5) with only
such a retarding stress at the pole would result in a deformation
varying linearly with ˇ.

4.3. Oldroyd-B drop in Oldroyd-B matrix (O/O)

We briefly investigate the effects of viscoelasticity when both
the phases considered are viscoelastic. Such systems have been
experimentally investigated by Mighri et al. [37] where they used
Boger fluids with four different relaxation times. They concluded
opposite effects of drop and matrix elasticity on deformation;
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Fig. 13. Deformation normalized with the steady state value of a Newtonian drop
retracting in a viscoelastic matrix for varying ˇ at Ca = 0.3 and Dem = 1.0. Inset shows
the normalized deformation with ˇ at t′ = 2 and t′ = 4.

increasing the elasticity parameter k ='d/'m = Ded/Dem decreases
drop deformation. Aggarwal and Sarkar [40] observed a mono-
tonic decrease in steady state value of D (Dsteady) with k. They also
observed that Dsteady in the O/O case is lower than that of the fully
Newtonian system for smaller values of Dem while for higher Dem
(e.g. De = 2.0), Dsteady is higher than that of the Newtonian case for
small k.

In the previous two sections we observed that viscoelasticity
in either phase delays drop retraction; delaying of the retraction
due to matrix elasticity is very prominent right from the begin-
ning whereas drop viscoelasticity quickens retraction initially but
slows down the process eventually. So we expect that in O/O case,
retraction would be slower eventually as De is increased for either
phase. However, initially there is a competition between the elastic
effects of two phases. Initially drop elasticity tries to retract the drop
quickly while matrix elasticity tries to slow it down. In Fig. 14(a) we
plot deformation parameter normalized by its initial steady value
for Ca = 0.3 for various k ='d/'m = Ded/Dem while keeping Dem = 1.0.
As k is increased the drop viscoelastic effects increase, and we see a
quicker relaxation for the initial period followed by slowing down
at later time similar to the O/N case. We investigate the normal
forces at the pole and the equator in Fig. 14(b) and (c). They resem-
ble those for N/O case (see Fig. 12) indicating that the viscoelasticity
of the matrix dominates that of the drop. At the pole, drops with
higher k have lower positive force, i.e. more inward pull due to vis-
coelastic stresses inside the drop. Consequently, higher k means
quicker relaxation. However at later times, the forces at the equa-
tor (Fig. 14c) become dominant as for the O/N case; for higher k,
the higher compressive force at the equator delays the retraction
eventually.

5. Summary

We numerically simulate the retraction of a drop when either or
both of the matrix and drop phases are modeled by an Oldroyd-B
equation. The simulation compares well with previous experiments
and analytical models. Increasing drop phase Deborah number
initially accelerates the drop retraction, but later slows it down.
Increasing the matrix phase Deborah number slows down the
relaxation process right from the beginning. Due to the viscoelastic
stresses developed during the shearing, the drop inclination angle
was seen to change during retraction. For the Oldroyd-B drop in

Fig. 14. Deformation (a) and normal forces at the pole (b) and equator (c) for a
viscoelastic drop retracting in a viscoelastic matrix with varying k at Dem = 1.0 and
Ca = 0.3.
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a Newtonian matrix, the non-monotonic behavior is explained by
resorting to a simple model. It assumes the flow for the retracting
drop to be roughly extensional, and involves three ODEs for the
two principle viscoelastic stresses and the deformation. The model
predicts the qualitative behavior of the simulated stresses and the
deformation. It shows that the tensional visoelastic stress primarily
acting at the pole is clearly aiding the capillary stress in retracting
the drop. However, the stress at the equator is opposing the retrac-
tion and leads to eventual slowing down. For a Newtonian drop in
an Oldroyd-B matrix, the force at the pole due to stretched poly-
mers inhibiting the retraction is much stronger and gives rise to the
delayed response. Increasing the ratio of the polymeric viscosity
to the total viscosity of the viscoelastic phase leads to deforma-
tion variation similar to that due to increasing Deborah number.
Retraction of an Oldroyd-B drop in an Oldroyd-B matrix is deter-
mined initially by the competition of the quickening influence of
the drop viscoelasticity and the retarding influence of the matrix
viscoelasticity.

The investigation shows that viscoelasticity in a relatively sim-
ple situation such as the relaxation of a sheared drop can give rise to
complex dynamics as a result of subtle interplay between develop-
ing viscoelastic stresses. Computation in conjunction with simple
approximate models can be a powerful tool in explaining the under-
lying physics. Finally, for estimating the surface tension from drop
retraction, the current analysis shows the difficulties when either
phase is viscoelastic. Even the simple toy model that was employed
to explain the dynamics requires three evolution equations. Relat-
ing the retraction to measurable rheological properties (e.g. shear
dependent viscosity, normal stress differences) of the two phases
by simple algebraic correlation (at least in certain range of param-
eters) will be of use and remains a challenge for future work.
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Appendix A.

For the Oldroyd-B drop relaxing in a Newtonian matrix, we find
that the drop viscoelasticity leads to faster drop relaxation ini-
tially and latter a slowing down. In an attempt to understand it
we develop a simple model. For the drop, we use a model similar
to what has been used in our previous articles [15,41]:

&̂â2Ẋ + *̂âX + (T̂P
xx − T̂P

yy)â2 = 0, X(0) = 1. (A.1)

Here X represents the non-dimensional drop deformation. Each
term is a force acting on an area a2. The first term is representative
of the viscous ‘damping’. The second term represents the interfa-
cial contribution+p̂∼*̂/[â(1 + X)] ≈ *̂(1 − X)/â (*̂/â just gives rise
to an isotropic pressure). The third term is the viscoelastic stresses.
Note that we assume that the flow inside the drop is roughly exten-
sional with the x′-axis of extension towards the pole (as can be seen
from simulation in Fig. 9). For the viscoelastic stresses, we use Eq.
(2). In an extensional flow, all off-diagonal strain rate terms are
zero. Therefore, for an Oldroyd-B fluid, the viscoelastic stresses (2)
become

'

�
∂Tp

x′x′

∂t
− 2Tp

x′x′
∂u′

∂x′

�
+ Tp

x′x′ = 2&p
∂u′

∂x′ , (A.2)
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�
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z′z′

∂t
− 2Tp

z′z′
∂w′

∂z′

�
+ Tp

z′z′ = 2&p
∂w′

∂z′ , (A.4)

Initially the sheared drop will start its relaxation with stresses
(at t′ = 0) that it has accrued during shearing. The advection terms
are not included above with an understanding that the stresses
are average over the drop volume V0. For the initial conditions on
stresses for the model, we use

〈Tp〉 =

�
V0

Tp dV

V0

from the simulation. We have found numerically that Tp
z′z′ remains

small during the entire relaxation process. Therefore, we neglect
it in the spirit of dominant balance. For the model, we use sym-
bols with hat to distinguish them from those in the simulation.
For the velocity gradients in (A.3) and (A.4), we note that the
extensional flow is generated by the deforming drop. Therefore
∂u′/∂x′∼ − ∂v′/∂y′∼ − X . This can be further justified by noting that
in a purely viscous system with the elastic stress terms from (A.1),
X∼e−t*̂/&̂â, insinuating an exponentially relaxing strain rate. We
non-dimensionalize (with a and (̇−1) the equations to obtain

dX
dt

+ 1

Ĉa
X + (T̂p

x′x′ − T̂p
y′y′ ) = 0, X(t = 0) = 1 (A.5)

D̂e
∂T̂p

x′x′

∂t
+ T̂p

x′x′ = −(2 ˆ̌ X + 2D̂eXT̂p
x′x′ ) (A.6)

D̂e
∂T̂p

y′y′

∂t
+ T̂p

y′y′ = (2 ˆ̌ X + 2D̂eXT̂p
y′y′ ) (A.7)

We numerically solve Eqs. (A.5)–(A.7) with stress initial condi-
tions, as mentioned above, computed from the average simulated
stress.
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